A METHODOLOGY FOR THE SIMPLIFICATION OF
TABULAR DESIGNS IN MODEL-BASED DEVELOPMENT
FormaliSE 2015

Monika Bialy, Mark Lawford, Vera Pantelic, and Alan Wassyng
May 18, 2015
McMaster Centre for Software Certification

Department of Computing and Software
McMaster University

OVERVIEW

> Introduction
> Methodology
> Industrial Case Studies

> Conclusions

MOTIVATION

- Model-Based Development (MBD) is increasingly used for
embedded control software

- Complex decision logic in Simulink is often implemented with
il

- Automotive partner has flagged some as particularly problematic

- Hard to understand, test, and trace to requirements
- 1S0 26262 ASIL D stresses low complexity, MC/DC testing, unambiguous
language constructs

Thus, more effective tabular constructs and reliable refactoring
techniques are needed

BACKGROUND

Stateflow truth table Tabular Expressions
Horizontal Condition Table (HCT)

Decisions
| Conditions | Dy | Dy | D3 | Dy
1| Condition, | T | T | T =
2 | Condition, | T | - F - Result
3| Conditions | T | T - - Conditions var
Actions 11234 | Condition, || Result,
_ Condition | ~Condition, || Result,
t || (G ~Condition; Results
1 | Actionq
2 | Action,
3 | Actions
4 | Action,,
- Diagnostic tools do not check disjointness - Disjointness required
- Implicit left-to-right semantics - No prescribed row evaluation order
- Completeness commonly forced with else - Completness is explicit

catch-all case - More intuitive and concise syntax

- Non-Boolean conditions expressed

o - Easily readable and traceable to
unintuitively

requirements
- Readability does not scale well

METHODOLOGY

Stateflow

- Thus, we leverage the use of Truth Table

tabular expressions to

remedy the deficiencies of
Stateflow truth tables

Transformation
to Tabular

Expression

- Guided refactoring is
facilitated as logical

simplifications are easier to
detect and apply pbutar

- Heuristics were designed to
be an easy-to-follow
process of performing
guided refactoring

Simplification

Transformation
to Stateflow Truth
Table

(Simplified) Legend
Stateflow Artefact Task
Truth Table

AUTOMOTIVE CASE STUDY 1

—.1 7
= - l | =
R l | 7%
= - —]

Figure 1: Subsystem for driver request arbitration

ORIGINAL STATEFLOW TRUTH TABLE

Decisions

Conditions Dy | Dy | D3 [Dy | Ds | Dg | D; | Dg | Do | Dig | D
1| eDrvrRequest==cState; | T | F | F | F | F | F[F[F|F]F | -
2 | eDrvrRequest == cState, | F | T | F F I T F FIT F F o
3 | eDrvrRequest == cState; | F F T F FlT F FLT F =
4 | eDrvrRequest == cState, | F F F T F F T F F T -
5 | bCmpntUnlocked = T|T|T o = - - - _ _
6 | bFaulty -l F|F |l F|T|T]|T] - B B B

Actions 1123|455 |5]5]5 5 1

Actions

eArbRequest=cState; bActionRequired=false
eArbRequest=cState,; bActionRequired=false
eArbRequest=cStates; bActionRequired=false
eArbRequest=cState,; bActionRequired=false
eArbRequest=cStateq; bActionRequired=true

G| W[N

Table 1: Driver request arbitration from cState;

DECOMPOSITION

- If the table computes outputs, decompose into multiple tables
each computing a output
Increases modularity, requirements traceability, greater reductions during
simplification

Decisions Decisions
] Conditions Dy [D; | Ds [Do | Ds | Ds | Dy | Dg | D | Dyo | Dy [l Conditions Dy [D, | Ds | D | Ds | Do | D Ds| Dy | D | Dy
1 TIF[F|F]F]F FIF[F 1| eDrvrRequest==cState; | T | F | F | F [F | F [F|F|[F|F |-
2 FIT]FIFITFIFIT[F]F 2 | eDrvrRequest==cState, | F [T [F [F [T[F[F[T|F[F
3 | eDrviRequest==cState; | F [F [T [F [F [T[F[F[T[F 3 | eDrvrRequest==cStates | F | F | T | F | F | T [F[F|T|F
4 | eDrvrRequest == cState, | F F FIT|F FIT|F F T 4 | eDrvrRequest == cState, | F | F FIT|F FIT|F F T
5 | bCmpntUnlocked SRR e 2EE 5 | bCmpntUnlocked SRR R e
6 | bFaulty F FIF|T|T|T]- - 6 | bFaulty F F FIT|T|T
Actions 11213 |4 5]5]|5 5 1 Actions 123|411]1]1 1 1 1
Actions # Actions
1 | eArbRequest=cStatey; bActionRequired=false 1 | eArbRequest=cState;
2| e q Statey; bActionRequired=fa. 2 | eArbRequest=cState,
3 | eArbRequest=cStates; bActionRequired=false 3 | eArbRequest=cState,
4 bRequest=cState,; bActi q =fal 4 | eArbRequest=cState,
5 quest=cState;; bAC rue

(a) Original (b) Decomposed

STATEFLOW TRUTH TABLE — HCT

U & W D =

Augment decisions with conditions and actions
Transpose
Group related conditions
Ensure disjointness and completeness

(a) Stateflow truth table

Formatting
Decisions
Conditions Dy | Dy | Dy | Dy | Ds | Ds | D7 | Dg | Dy | Dyp | Dy
1| eDrvrRequest==cState; [T | F | F [F [F[F[F[F[F]F]-
2 | eDrvrRequest==cState, | F [T [F [F [T F|F|T|F[F
3 | eDrviRequest==cState; [F [F [T [F[F | T|F[F|T]F
4 | eDrvrRequest == cState, | F | F FIT|F FIT|F F T
5 | bCmpntUnlocked - T|T|T - - - - - -
6 | bFaulty Sl FlF[F[TT]T]- =
Actions, 1231|121 |1|1]1]1
Actions
1 | eArbRequest=cState;
2 | eArbRequest=cState,
3 | eArbRequest=cStates
4 | eArbRequest=cState,

Result
Conditions eArbRequest
eDrvrRequest == cState; cState,
—bFaulty [_bCmpntUnlocked cState,
eDrvrRequest == cState; ‘ —bCmpntUnlocked cState,
bFaulty cState,
v— [_bCmpntUnlocked cStates
eDrvrRequest == cStates ‘ —bCmpntUnlocked cState;
bFaulty cState,
bCmpntUnlocked cState:
“bFaulty ‘ p ol
eDrvrRequest == cState,, ‘ -bCmpntUnlocked cState;
bFaulty cState,

(b)

HCT

SIMPLIFICATION 1

A. Condition Ordering

- Vertical

Move decisions with the most “don’t cares” to upper rows to increase

efficiency and speed of evaluation

Result Result
Conditions eArbRequest Conditions eArbRequest
eDrvrRequest == cState; cState, eDrvrRequest == cState; cState,
—bFaulty ‘ bCmpntUnlocked cState, bFaulty cState;
eDrvrRequest == cState, ‘ —bCmpntUnlocked cState, eDrvrRequest == cState; bFaulty \ bCmpntUnlocked cState,
bFaulty cState; ‘ ~bCmpntUnlocked cState;
bFaulty ‘ bCmpntUnlocked cStates bFaulty cState;
eDrvrRequest == cStates \ —bCmpntUnlocked cState, eDrvrRequest == cStates; —bFaulty \ bCmpntUnlocked cState;
bFaulty cState; | =bCmpntUnlocked cState,
—bFaulty ‘ bCmpntUnlocked cState, bFaulty cState;
eDrvrRequest == cState,, ‘ —bCmpntUnlocked cState, eDrvrRequest == cState, —bFaulty \ bCmpntUnlocked cState,,
bFaulty cState, ‘ —bCmpntUnlocked cState;

(@) Pre-simplification

(b) Vertical reordering of bFaulty for

consistency

SIMPLIFICATION 2

A. Condition Ordering, Continued

Horizontal

Nest conditions to minimize evaluation
- Visual means of representing the dominance of conditions

Result Result
Conditions eArbRequest Conditions eArbRequest
eDrvrRequest == cState; cStateq bFaulty cState,
F ki
bFaulty cStateq eDrvrRequest == cState, bCmpntUnlocked cState,
eDrvrRequest == cState, bFaulty ‘ bCmpntUnlocked cState; —~bCmpntUnlocked cState;
B —bCmpntUnlocked cState: bCmpntUnlocked cState.
‘ bFuu(I‘y7 cSmre1 DIPTSR anfpntUn{ocked cSmtez
il il il
“bFaulty
eDrvrRequest == cStates bFault \ bCmpntUnlocked cStates 4 eDrviRequest == cState bCmpntUnlocked cStates
P [pCmpntUnlocked || _cstate, q * [“bCmpntUnlocked | cState;
bFaulty cState; eDrviRequest == cState bCmpntUnlocked cState,
eDrvrRequest == cState, | _, [_bCmpntUnlocked cState,, —~bCmpntUnlocked cState
4 ‘ ~bCmpntUnlocked cState;

(@) Pre-simplification

(b) Horizontal reordering of bFaulty to
show dominance

SIMPLIFICATION 3

B. Granted State Simplification

Particularly useful for systems which arbitrate operational modes

- A condition check is not required when the condition’s value is
granted and passed through

- The mode variable can be directly placed in the result column

Result Result
Conditions eArbRequest Conditions eArbRequest
bFaulty cState; bFaulty cState;
DrviR ¢ == cstat bCmpntUnlocked cState, bCmpntUnlocked eDrvrRequest
eDrvrRequest == cotate —bCmpntUnlocked cState, eDrvrRequest == cState; cState,
bCmpntUnlocked cState; —bFaulty I eDrvrRequest == cState; cState;
== =bCi tUnlocked
eDrvrRequest == cState, —bCmpntUnlocked cState; mpnEUntocke eDrvrRequest == cState; cState,
—bFaulty bCmpntUnlocked CStates eDrvrRequest == cState, cState;
eDrviRequest == cStates [— e inTocked cState;
bCmpntUnlocked cState,

eDrvrRequest == cState,

—bCmpntUnlocked cStatey

(a) Pre-simplification (b) Granted state simplification of
eDrvrRequest

1

SIMPLIFICATION 4

C. Removal of “Don’t Care” Conditions

- When a condition does not affect the outcome of a decision, it is
treated as a “don’t care”
- ldentify multiple instances of the in the results

- If the paths are the same except for one condition, and can be
combined to cover the range of the condition’s type

Result Result
Conditions eArbRequest Conditions eArbRequest
bFaulty cState, bFaulty cState,
bCmpntUnlocked eDrvrRequest “bFaulty [bCmpntUnlocked || eDrvrRequest
eDrvrRequest == cState; cState; ‘ —bCmpntUnlocked cState;
—bFaulty eDrvrRequest == cState, cState;
pecnendiniocked eDrvrRequest == cStates cStatey
eDrvrRequest == cState, cState
2 5 2 . o “ ’
(@) Pre-simplification (b) Simplifying eDrvrRequest to a “don’t

care”

SIMPLIFICATIONS, CONT'D

D. Grouping

- A of rows which lead to the same output can be grouped

- Used when removing mode-centric conditions in their entirety is
not achievable, or unnecessary

E. Compound Simplification

already simplified rows to enable further table
simplification through the use of the newly introduced rows

- Useful when altering an existing table to display a design in a
specific manner that corresponds to a requirement

HCT — STATEFLOW TRUTH TABLE

1. Remove tabular expression formatting
2. Transpose

3. Construct condition section

4. Construct action section

Decisions
M. # Conditions Dy | D, | D3
esu
———— F T|F|F
Conditions eArbRequest bFaulty
2 | bCmpntUnlocked | - | T | F
bFaulty cState; =
bFaulty bCmpntUnlocked || eDrvrRequest Actions 112]1
—bCmpntUnlocked cState, i Actions
1 | eArbRequest=cState;
2 | eArbRequest=eDrvrRequest
(@) HCT (b) Stateflow truth table

14

METHODOLOGY

of equivalence between original and refactored
tabular expressions with Prototype Verification System (PVS)

- The equivalence between steps is easy to see
- Verifying equivalence between other intermediate steps is also possible

- Methodology applied to the remaining tables of the subsystem
- Refactored tables replaced original tables in the model

CASE STUDY 1: RESULTS

- Compare original & refactored designs w.r.t. testing and complexity
- Simulink Design Verifier (SDV) was used

Original Refactored
Tests 7 9
Test Steps 97 48
Test Time (s) 18 7.8
Number of Objectives 1016 371
Objectives Satisfied 797 (78%) || 311 (84%)
Objectives Proven Unsatisfiable | 219 (22%) || 60 (16%)
Cyclomatic Complexity 274 107

Table 2: Comparison of test suite generation and complexity

Original Refactored
Satisfied | Total | Percentage || Satisfied | Total | Percentage
Condition 368 452 81% 110 140 79%
Decision to 112 112 100% 95 95 100%
MC/DC 141 226 62% 4t 70 63%

Table 3: Comparison of test coverage 16

CASE STUDY 1: RESULTS

- Can be used directly in
- HCTs are generally more readable

- Requirements presented more evidently and thus are more
traceable

Result
Conditions eArbRequest
bFaulty cState,

bCmpntUnlocked eDrvrRequest

Requirement: “remain in cState; when there are no faults, but the
component is locked”

CASE STUDY 2

2 Stateflow truth tables + 1 calibration matrix

Figure 9: Subsystem for determining overall system status

CASE STUDY 2: TRANSFORMATION

(a) Stateflow truth table (1 of 2)

Result
Conditions bOpra

\ eOprAStat == cNotPlgIn A eOprBStat == cNoTools A =bEnblCond A —~bProcessRun A eSystemp == cNotPlgdin A eKState == cPos5 || true
‘ eOprAStat ~= cNotPlgin A eOprBStat ~= cNoTools A bEnblCond A bProcessRun A eSystemp ~= cNotPlgdin A eKState ~= cPos5 false

(b) Tabular Expression (1 of 8)

19

RESULTS

Original Refactored
Tests 23 6
Test Steps 1214 24
Test Time (s) 100 3.6
Number of Objectives 1954 498
Objectives Satisfied 1591 (82%) | 445 (89%)
Objectives Proven Unsatisfiable | 202 (10%) | 53 (10%)
Objectives Undecided 161 (8%) 0
Cyclomatic Complexity 935 248

Table 4: Comparison of test suite generation and complexity

Original Refactored
Satisfied | Total | Percentage | Satisfied | Total | Percentage
Condition 1309 1672 78% 363 418 87%
Decision 297 300 99% 84 84 100%
MC/DC 473 836 57% 154 209 74%

Table 5: Comparison of test coverage ”

CONCLUSIONS

Conclusions

- Proposed a methodology for the refactoring of complex tabular
designs
Shown to increase testability and decrease complexity

- Applied to two industrial models
- Refactored designs incorporated into

Future Work

- Simulink lacks model refactoring tools

- Tool support and automation

21

