OBTAINING TRUST IN AUTONOMOUS VEHICLES:
TOOLS FOR FORMAL MODEL SYNTHESIS
AND VALIDATION

Connie Heitmeyer
Beth Leonard

Software Engineering Section

Center for High Assurance Computer Systems
Naval Research Laboratory
Washington, DC

FormaliSE: FME Workshop on
Formal Methods in Software Engineering
Florence, Italy
May 18, 2015

OUTLINE

® Background
- Formal methods: Shown to have utility in practice
- Why software problem even harder now: Cyber Physical Systems

- Two kinds of trust needed in developing Unmanned/Autonomous
Vehicles, a special class of CPSs

® Transitioning FMs to software practice
- Challenge 1. How to obtain the formal system model
= Formal model synthesis from scenarios
- Challenge 2. How to model/analze CPSs

= 3D simulation based on a formal req. model
® Scenario-Based Formal Model Synthesis
® Formal Model-Based 3D Simulation
® Conclusions and Future Work

5/22/2015

BACKGROUND

UTILITY OF FORMAL METHODS IN
REAL-WORLD SOFTWARE HAS BEEN SHOWN

: Detect

; errors
Weapons Control Panel International Space Station
e Large complex program (~30KLOC) * Failure Detection, Isolation & Recovery in
« Contractor software req. spec: 250+ vars Thermal Radiator Rotary software module
e Translated into a formal model in 2 wks. ® Translating semiformal req. documents into
« Model checking showed that all six safety a formal spec exposed two serious errors!

properties violated!

Help verity Tools used
model & in industry
B - code
Software-Based Crypto Device Locl_<heed Martin |
« FMs used in certification of security » Since 1999, SCR tools used by 3 sites

+ EALG+ Common Criteria evaluation ~ * VIe 2Tertly 216 Subhorlirg Blose f0 to0%
. Formalhsecurlty model %_for:cnal Vpi”f" | be...invaluable...in finding requirements
demo that C code satisfies formal mode defects, as well as validating the functional

5/22/2015 behaviour of our software requirements.” «

Presentator
Presentatienotities
WCP
NASA App
PEIP
Lockheed Martin quote

DEVELOPING CORRECT SOFTWARE IS
BECOMING EVEN MORE CHALLENGING

® Prior focus of FMs: Embedded Systems

- An embedded system is immersed in a physical system that it
monitors and controls

- Focus in development is on the embedded system only

® New Challenge for FMs: Cyber Physical Systems

- Acyber physical system combines a digital system performing
computation with physical processes

- Problem: Managing the dynamics, timing and concurrency in both the
digital system and physical processes

® Imp. Class of CPSs: (Intelligent) Unmanned/Autonomous Systems

50015 DIMeENsions to Cyber Systems,” Internat. Conf. on Cyber Physical Systems, 2014.

Problem for Unmanned Systems:
Human Mistrust of Automation/Autonomy &

e Two kinds of trust needed*

- System Trust: Human confidence that system behaves as intended

— Operational Trust: Human confidence that system helps him/her
perform the assigned tasks

e To achieve system trust
- Need high assurance that system satisfies its requirements

» formal modeling, formal verification

e To achieve operational trust

- Need well-designed HCI and human validation that the designed
autonomy will help

» formal modeling, model-based simulation

*Dan Zwillinger, Ratheon, S5, 2014.

5/22/2015

A SOLID BASIS FOR OBTAINING SYSTEM &
OPERATIONAL TRUST: AFORMAL MODEL

BENEFITS OF A FORMAL SYSTEM MODEL

e Can be verified to satisfy the required system properties
= system trust

e Can be validated to show that it captures the intended behavior
=> operational trust

PROBLEM IN CURRENT SOFTWARE PRACTICE
e Formal system/requirements models are rare

— Practitioners regard formal notations as difficult to understand and
apply; don’t think that formal models scale, are cost-effective*

e When they do exist, formal models are often
- Ambiguous: Rep’d in languages w/o a formal semantics
- Expressed at a low level of abstraction

OBTAINING A FORMAL MODEL: A PROMISING APPROACH
e Synthesize a formal model from scenarios

*C. Heitmeyer, “On the need for practical formal methods,” FTRTFT, 1998.

5/22/2015

SCENARIO-BASED
FORMAL MODEL
SYNTHESIS

Formal Model Synthesis

n

from Scenarios

Already significant research on this problem
e Most research based on Message Sequence Charts (MSCs)

Many practitioners use MSCs to specify requirements

Natural therefore to develop methods which synthesize formal
models from MSCs

e Why Introduce Yet Another Method?

5/22/2015

The SCR notation scales, is expressive and understandable by
practitioners

SCR tools have already been used successfully 1) to detect errors in
and 2) to verify both models and source code

While developers have difficulty creating tabular specs, they can
readily extend & modify models expressed as tables

A model generated from scenarios is inherently incomplete; the SCR
CC automatically finds incompleteness in a model

SCR makes available a wide range of tools for formal model analysis
and validation, test generation, code generation, etc.

9

Our New Scenario Language:
A Moded Scenarios Description

A Moded Scenarios Description (MSD) has three components

e A set of Event Sequence Charts (ESCs) ™ Numeric Labels
_ Inspired by MSCs link the Mode
~ Look like MSCs — Diagram with

e A Mode Diagram the ESCs

e A Scenario Constraint
— Defines initial variable values
— Specifies assumptions and properties (e.g., safety and security)
- Defines constants, and state invariants

Ref. [1] presents our new scenario language, a
mathematical model that defines its semantics, and two
algorithms for generating definitions of the dependent

variables from elements of the MSD

lc. Heitmeyer et al., “Building Human-Centric Decision Systems,” ASE, 2015.

10
5/22/2015

Formal Model Synthesis from a MSD:
Event Sequence Chart

¢

Agent-Control

Cog Dist2 Op System/ UAV
UAV i||Model|| Haz i || Cmd Agent Display | | traj i

1 mUAV_I = unsafe

—

dUAV _i=unsafe
>

6 mOpFix_i = False
tFixated_i=False

7 mdistZhaz_i=sminD N
WHEN tFixated_i=False
dNewWP_i=x
cNewWP_i=x

8 mUAV i = safe

>
d UAV_i=safei

N O

11
5/22/2015

Formal Model Synthesis from a i
Moded Scenarios Description

"7

. .. <4—» manual
Scenarios specified as ESCs ——» automatic

4{ OpControl_b! }
Cog || Dist2 || Op System UAY

|UAV_i| Model || Haz_i || Cmd Agent |D13play| traj_i

1 mUAV_i=unsafe WHEN mdist2haz_i ! tooclose!
dUAV_i=unsafe

Mode Diagram

mdist2haz_i<min1 WHE
4 mdistZhaz_i ! min2 AND
yOpclass_k=11

cPause_i=true
dPause_i=true
5 mNewWP_i=x! —
— "cPause_i=false
dPause_i=false

dNewWP_i=x
cNewWP_i=x

6 mMUAV_i = safe

dUAV_j=safe
_GoAv msate]
I B O

| Agent-Control | FORMAL Scenalrio Constraint
| UAV i | Mcociigel }El)zlaszti Con’?d szzteenr?/ Display ‘[Lrjelt?\ji M O D E L l

1 mUAV_i = unsafe

o dUAV_i=unsafe
6 mOpFix_i = False
| tFixated_i=False

1 Jok @T[mUAV_i=unsafe) | FALSE FALSE FALSE
7 mdistZhaz_isminD > 3 | op_control FALSE @T(mNewWP_i=x) | FALSE FALSE
WHEN IFixated_i=False 4 |op.c I FALSE FALSE T(MUAV_i=safe) | FALSE
dNewWP_i=x EECOIEE @T(mUAV_i=safe)
——
cNewWP i=x 5 | Agent_Control | FALSE FALSE FALSE @T(mLook_i=F)
. dUAV_i* = | {unsafe, -) (- %) (safe, -) (hovering, -)
8 mUAV_i = safe

dUAV_i=safe
E—

5] 5]

12
5/22/2015

Formal System Model Synthesis:
Method

o (1 b1 (M1, Hp) D Manual
|Jz (Ul, U3) /
Requirements —>
Engineer — Hn (Mn.1, Hn)
Scenarios Modes Mode
%/ \ N Transitions .
my|[t(my) | | ¢y | t(cy) fy e, S
m2 t(mz) C2 t(CZ) f2 eZ / FX M X E -> M
Function
me | [tmy) | [| ¢ || t(c) fy €y defining
Monitored |[Controlled /Events Events mode
Vars & Vars & gﬂggegg?n triggering transitions
Their Their g mode
Types Types %%?};%lllgg transitions
6 Functions defining
1. controlled
variable

5/22/2015

F(c): M XE->TY(c,)

values

13

Formal System Model Synthesis:
Method

o 1 My (M1, M) Manual
L H2 (M bs) / Totally
Requirements — Automated
Engineer — Mn (Mn-1, Hn)
Scenarios Modes Mode Check
-
/g/ \ \ rans't'ons/ Well-formedness
3 2\ \ \ of Model
m, | tmy) | |c, t(cl) f) Hl €| "\ 8
m, | t(m,) | | c, | t(C,) f, H2 | € | > F:M XE->M
Function N
m, t(mk) C, t(CI) 1tv M €. defining COChSeitkeerCy
Monitored |Controlled trIiEg\éee?itﬁg tI_Even_ts mode
riggerin .
Vars & vars & changesin ?ngode 9 transitions
Their Their controlled , i
Tvoes Tvpes . ransitions
78 hyp — P 6var|ables J Functions defining
ygﬁ) r?nsiazle 1 c\(/);\rtig)llolleed Dfetect vliolations
F(c.)) M X E -> TY(c of completeness,
Model ())] values disjointness,...

5/22/2015

14

Formal System Model Synthesis:
Method

1

(M1, Uz)\

o M1 Manual
L H2 (1, bs) / Totally
Requirements —>| Automated
Engineer ""'_ Mn (Mn-1, Mn)
Scenarios Modes _ Mode Check
Transition
/g/ \ \ anstio S/ safety
s — 3 4\ \ \ properties
m, || t(my) Cq t(Cl) f; “1 €, S 9
m, t(m2) C, t(CZ) fz M2 €, | > FH' MXE->M « If two UAVs are on
. a collision course,
Function the system notifies
m, t(mk) C t(C|) fv M e, defining tge operator within
Monitored |Controlled tr%\éeer;itﬁg tI_Even_ts mode « ifa UAV has no
Vars & vars & : rggering transitions assigned target, the
Their Their changelzls '(;] mode e oraor it 15,
7 Types Types (\:/Oar:::;%lees transitions . o
_ 6 J Functions defining
Synthesized 1 controlled 5 t
Formal) variable roperty
Model F(c):M XE->TY(C) | values is/is not
valid 15

5/22/2015

Synthesized Formal Model:
Provides Basis for Validation

@ (1 Ty (M1, Uz)\ Manual
o | | ,
=] M | el / Totally
Requirements —> | ..~ —| Automated
Engineer — ' Mp (Un-l, Un)
Scenarios Médés Mode Validate
/g/ \ \Transmonsy Model &
s 3 2\ \ \ Assumptions
m, || t(m,) | | c, t(cl) f, ul e, S
m, | t(m,) | |c, | t(c,) f, H2 | € | > F:M XxE->M
S
m, | t(m,) C, t(c) f, Mn e, defining
Monitored |Controlled trIiEg\éeel?itﬁg tI_Even_ts mode
riggerin L
Vars & Vars & changesin g9 : 9 transitions
Their Their e N t mo’t'e
Tvpes Tvoes . ransitions
/ b _ P 6var|ables Functions defining F _
Synthesized ~ , controlled Assumption
Formal . variable is/is not
Model F(c): M xE->TY(c,) values valid

16
5/22/2015

Our Tool's Representation of a
Moded Scenario Description

(] Scenario Visualizer E]@E]
File Edit

Editor List =4 .J:|
[1 cargoTransport .| =8 (] TrustedCargoTransp .| - B OO

|OpCmd‘ |ActuaILoc| |Cargo.oaded SystemAgent| DesiredLoc bp_(‘.md Actualloc |Cargol.oaded‘ |TrustLeveI| ‘SystemAgent DesiredLoc
‘1 mTask:‘CargoTransp ‘1 mTask=CargoTransp
cNewLoc= 4]
PickupLoc |~

.‘cNewLoc=Pickuanc

2 mLoc=PickjipLoc

3 mLoaded=true 2 mLoc=PickupLoc ‘
Te m p I ate }cNewLoc=DropLoc
“ ! 7 mTLev=BT
defining e
‘5 mLoaded="false ‘

. e ESC 2 ‘cHri;vLLom
initial values ESC 1 IR
Of Varlables 6 mLoc=Home |

(]

4 mLoc=DroplLoc

T

6 mLoc=Home ‘

.| = @DI | TrustedCargoTransp2 @ =70

(1 Initial Values .| - e (] Mode Class Editor

Name Value
mkggde" 'F-lalosr%e OpCmd| |ActualLoc |Cargol_oaded‘ TrustLeveI‘ ‘SystemAgent DesiredLoc
mTLev AT

i ‘3 mLoaded=true I

cNewLoc= [+]
—— DropLoc |+
11 mTLev=BT

4 mLoc=DropLoc ‘

Template
containing
a single
assertion Mode Diagram

|.] constants | {1 Assumptions [4

(] Assertions

‘10 mLoaded="false

ESC 3 ‘mmj

6 mLoc=Home

Value
(mTask=EOD AND mLoaded) => NOT(cNewLoc=Home]

The Formal Model
Synthesized from the MSD

File Edit View Navigate Tools Window Help Q-

g ="

L - f Proj... ¥ |Files Services Type Dictionary = = i. -:Mode Transitions] UGVmode = say
ISt 0 & ey Name h Base Type Units Legal Values Comments Source Mode Events Destination Mode Comment
& UGV.scrxml
mTask_ENUMERATED Enumerated CargoTransp, EOD oad @T(mLoaded = true) Unload
M Od e | S mTLev_ENUMERATED Enumerated AT, BT Home @T(mTask = CargoTransp)
mLoc_ENUMERATED Enumerated Droploc, Home, Pickuploc Jnload @T(mLoaded = false) M Od e
cNewLoc_ENUMERATED Enumerated DPropLoc, Home, Pickuploc Home mTask = EOD)

Jnload mTLev = BT)

s Trans.

['ype Dictionary e
LiSt Of Jntrusted @T(mTLev = AT) Unload
Name Modes Initial Mode Comments Newloc ® 1“’

UGVmode Untrusted, Unload, Home, Load Home

all
Model
Compo-

s EVENt

Modes Comments

Home NEVER NEVER Lab:l(@;ﬁansp)
Home NEVER @nﬂasf—. EOD)

UGV.screm - Navigator = | oad @T(mlLoaded = true)
i év“:‘iask GRS . . nload NEVER @T(mTLev = BT) NEVER
n e ntS & mTLev_ENUMERATED M O d e C I aSS D I Ctl O n ary Mioad | NEVER G(ml oaded'= falsﬂ@@ ntro | I e d
S imite L MERATED ntrusted NEVER @T(mLoaded = false) NEVER

& clewloc_ENUMERATED

.
28 Mode Classes Varabe pictonary = : ENewLoc = Droploc Home va.fl ab I e
@ uGvmode Name Kind & Type Initial Value Accuracy Table Kind Value Comments|

B Constants

& variables Task Monitored mTask_ENUMERATED
| [EBsk i T IUMERAT | ey g
@) mTlev TLev Monitored mTLev_ENUMERATED AT prmbted bt
O: mLoc Loc Monitored mLoc_ENUMERATED Home Name Expression Source Prove Comments
=] mLoaded kafeE false
* chewLoc Loaded Monitored Boolean false afeEOD mTask=EOD AND mLoaded) => false

© Condition Tables NOT(cNewLoc = Home)

@ Event Tables
& cNewloc
B8 Mode Transition Tables

Variable Dictionary Assertion Dictionary

NewlLoc Controlled c_ENUMERATED Event

3-D Simulator

19

Simulators Based on a
Formal Model

A

o

Many just have textual displays Afew (e.g., SCR, Statemate)
| - allow creation of custom 2D GUIs

Logs each state change and notifies user when Simple features such as
violations of assumptions or specified properties occur buttons, switches, and dials
Limitations

No 3D, discrete computation only, no continuous movement

Two Types of Simulators:
Formal Model Based vs Application-Specific

Approach: Integrate a formal model based simulator with an
application-specific simulator

Process
1. Choose an appropriate application/domain simulator: Represents
system’s physical aspects and its operational environment

2. Use two simulators: E.g.,
> a customized formal model based simulator as the system controller and

> the application-specific simulator to represent the dynamic behavior of
the system environment

3. Integrate the two simulators: Allows communications between the
two at appropriate points during execution
Benefits of Integration
e From application-specific simulator: more realistic simulation

e From formal model tools (including simulator): formal foundation that

allows notification of property violations during simulation “

eBotworks*: An Application-Specific Simulator f"im;}‘*
for UGVs (Unmanned Ground Vehicles) N

e Simulator and testbed for autonomy software for
command and control of unmanned systems

e Built to support locomotion and path planning
Wheeled UGV Is the choice of vehicle we selected

e Using eBotworks, we built a simulated world containing
landmarks (e.g., roads) and objects (e.g., packages,
vehicles)

22
*http://Iwww.knexusresearch.com/products/ebotworks.php

Integrating eBotworks

A

with the SCR Simulator Il
System Controller: Customized GUI ~ eBotworks: Displays system environment,

Front-End for the SCR Simulator vehicle location & motion, path planning

NONE CARGO EOD

STATUS
UNLOADED

e User inputs (e.g., commands to perform a task and changes in trust
measure) given via SCR simulator and passed to eBotworks

e eBotworks performs actions associated with commands, sending
information about vehicle status and location back to SCR

e Integration via shared files

Validation of UGV Model: Property Checking
During Simulation Exposed an Error

TrustedEOD2

Op ExpOrd [| Trust System/ _

Cmd_| Loaded? || Level Agent | DesiredLoc |
omTask = EOD

Loc=PickupLo
2 mlLoc = PickuplLoc I

3 Loaded=tm

T~~~ cNewLoc=DropLoc
4 mLoc = DropLoc P =

=

12 mTLev=BT
T Newloo=Home)K"

7

6 mLoc=Home ———
L]
TrustedEOD2
Op ExpOrd [| Trust System/
cmd |ActualLoc| Loaded? || Level Agent |Des£redl_oo |

9 mTask=EOD

v

cNewlLoc=PickupLoc o

2 mlLoc = PickuplLoc

\ 4 v

3 mbLoaded=true

cNewlLoc=DroplLoc
4 mLoc = DropLoc P =

5
>

11 mTLev:‘BT

10 mLoaded=false]|

= cNewLoc=Home A
6 mLoc = Home "

e
>

/

Task: Explosive Ordnance Disposal (EOD)

Bringing explosive
ordnance home
UNWANTED SYSTEM
BEHAVIOR

Unlloading explosive
ordnance before
coming home

INTENDED SYSTEM
BEHAVIOR

SUMMARY AND
FUTURE WORK

e Benefit of Formal Methods Tools: High Assurance

e Two Important Gaps in Formal Methods Tools
1. Getting an initial model
> Addressed by synthesizing model from scenarios

2. Simulating 3D, motion, continuous behavior

> Addressed by integrating formal methods simulator with
application-specific simulator

e Future Work:

- Improved tool support for specifying scenarios and model
synthesis

- Develop SCR simulator interface to facilitate future
Integrations

- Integrate SCR simulator with other application-specific
simulators with more capabilities
> AV2 Ground Vehicle
> Unmanned Cargo Transport Helicopter

Role of Formal Methods in Developing
“Intelligent” Autonomous Systems?: 2

e Needed research “ranges from economics, law, and
philosophy to computer security [and] formal methods”

e “As autonomous systems become more prevalent in society,
It becomes increasingly important that they robustly behave
as intended. The development of autonomous vehicles,
...autonomous weapons, etc., has therefore stoked interest Iin
high-assurance systems where strong robustness guarantees
can be made”

e “...society will reject autonomous agents unless we have
some credible means of making them safe”

e Formal verification and validation are critical...

l“Research priorities for robust and beneficial artificial intelligence,” Future of Life

Institute, Jan. 2015
2«Benefits and risks of artificial intelligence,” T. G. Dietterich, President, AAAI, Jan. 2015

	Dianummer 1
	OUTLINE
	Dianummer 3
	UTILITY OF FORMAL METHODS IN �REAL-WORLD SOFTWARE HAS BEEN SHOWN
	DEVELOPING CORRECT SOFTWARE IS �BECOMING EVEN MORE CHALLENGING
	Problem for Unmanned Systems: �Human Mistrust of Automation/Autonomy
	Dianummer 7
	Dianummer 8
	Dianummer 9
	Dianummer 10
	Dianummer 11
	Dianummer 12
	Formal System Model Synthesis:�Method
	Formal System Model Synthesis:�Method
	Formal System Model Synthesis:�Method
	Synthesized Formal Model:�Provides Basis for Validation
	Our Tool’s Representation of a �Moded Scenario Description
	The Formal Model�Synthesized from the MSD�
	Dianummer 19
	Simulators Based on a �Formal Model
	Two Types of Simulators:�Formal Model Based vs Application-Specific
	eBotworks*: An Application-Specific Simulator�for UGVs (Unmanned Ground Vehicles)
	Integrating eBotworks �with the SCR Simulator�
	Validation of UGV Model: Property Checking �During Simulation Exposed an Error
	SUMMARY AND�FUTURE WORK
	Role of Formal Methods in Developing�“Intelligent” Autonomous Systems1, 2

