VDMPad: a Lightweight IDE for
Exploratory VDM-SL Specification

Tomohiro Oda Software Research Associates, Inc.
Keijiro Araki Kyushu University
Peter G. Larsen Aarhus University

This work is supported by Grant-in-Aid for Scientific Research (S) 24220001

Agenda

1. Exploratory specification

2. VDMPad

3. LIVE tastes of VDMPad

4. Lightweight IDE for lightweight modeling

5. Conclusion

Exploratory Specification

exploratory specification
pre-formal phase

iInformal requirements

0

formal specification
which FM tools support

exploratory specification
the first step into formal spec

iInformal requirements

0

struggle to produce
an initial draft of formal spec

e

formal specification
which FM tools support

exploratory specification
Cycle of exploration

iInformal requirements

write a specification
by understanding the domain

understand a domain
by writing the specification

rigorous formal specification
which FM tools effectively support

o

exploratory specification

@ exploratory formal specification

write a specification

@ by understanding the domain

understand a domain
by writing the specification

N

exploratory specification

Challenges

write a specification

m by understanding the domain

understand a domain
by writing the specification

Repeat trial and error

various abstraction of the domain
various constructs of the language

The problem definition is not clear.
Because we ARE defining it.

We learn the nature of the problem
from the spec you will write.

VDMPad

VDMPad

A lightweight VDM-SL IDE for

e exploratory formal specification
e introductory education of VDM-SL

with LIVE tastes

VDM-SL

Quick overview of VDM-SL

types

o hat, real, char, seq, set, map, composite, token, ...

values
o constant values

functions
o pure (total / partial) functions
o expressions (if-then-else, lambda, ...)

states
o variables

operations
o statements (assignments, while, ...)

VDM-SL
example: fibonacci numbers

1 state Fib of

2 nl:nat

3 n2 : nat

4 inits==s=mk_Fib(0, 1)

5 invmk_Fib(n1,n2) ==n1>0o0rn2 >0

6 end

/ operations

2 next:() ==>nat

9 next() ==(dcln:nat:=n1 +n2;nl :=n2; n2 :=n; return n)
} %) post RESULT =nl~+n2~andn2 =nl~+ n2~andnl =n2~;
12 prev: () ==> nat
12 prev()==(dcln:nat:=n2-n1;n2:=n1;n1 :=n; return n2)
14 prenl >0
15 postRESULT=n2andnl +n2=n2~andn2 =nl~;

LIVE tastes

LIVE tastes of VDMPad

state manipulation
workspace

animation over modifications
visual presentation
continuous unit testing
permissive checking

LIVE tastes
state manipulation

e The user can directly edit the state of the
animated system.

o to check if the given state satisfies invariants

o to animate behavior of the system in the given
hypothetical state
= not always be realized by a series of operations
= easy to reproduce the state of the concern.

LIVE tastes

state manipulation

[]
&

[]
(o

Men

VDMPad Tomohiro

localhost:8085

VDMPad

types
Item = <BEER> | <WINE>;

powered by Squeak Smalltalk with VOMJ
about VDMPad

Bag = map Item to nat1;
Order = seq of (Item * nat1);
valiac
I->}
u Handle
stock : Bag
init s == s = mk_Inventory(empty)
end
operations

Buy : Order ==> () .
Bluy(order) == for mk_(item, num) in order do
et

current_num =
if itemin set dom stock
then stock(item)
else

in
stock := stock ++ { item |-> current_num + num } ;

Specification
Editor

DEFAULT "
stock {<BEER> |-> 10, <WINE> |-> 3}
_BEER | WINE | | State Area
10 3 |
T nitaize
-
=
iR) e D
Workspace
evaluate
Lo
-

Return Value

Message
Area

LIVE tastes

state manipulation

I module name I

I values I

DEFAULT
ballance

I variable name K: 4
ck

S
BEER | WINE |
36

3

4

{<BEER> |-> 36, <WINE> |-> 3}

I visual presentation i

Initialize

X

| initialize button |

LIVE tastes
workspace

e workspace is a free text editor

o to list and evaluate
= a series of operations in a scenario.
= a set of basic operations to drive the animated
system in exploratory ways.

o toleave memos in natural languages.

LIVE tastes

workspace

[]
&

[]
(o

Men

VDMPad Tomohiro

localhost:8085

VDMPad

types
Item = <BEER> | <WINE>;

powered by Squeak Smalltalk with VOMJ
about VDMPad

Bag = map Item to nat1;
Order = seq of (Item * nat1);
valiac
I->}
u Handle
stock : Bag
init s == s = mk_Inventory(empty)
end
operations

Buy : Order ==> () .
Bluy(order) == for mk_(item, num) in order do
et

current_num =
if itemin set dom stock
then stock(item)
else

in
stock := stock ++ { item |-> current_num + num } ;

Specification
Editor

DEFAULT "
stock {<BEER> |-> 10, <WINE> |-> 3}
_BEER | WINE | State Area
10 3 |
T nitaize
-
-
iR) e D
Workspace
evaluate
-
=

Return Value

Message
Area

LIVE tastes
workspace

memo I I selected expression I

/

orders K
Bu?/([[mk_(<BEER>, 1 O;, mk_(<WINE>, 2)])
Sell([mk_(<BEER>, 2)]

prices
pricelistForPurchase
pricelistForSales \\

evaluate

?

VDM-SL expression I I evaluate button I

More freedom than
REPL (Read-Eval-Print Loop) console!

LIVE tastes
animation over modifications

e Keep the state of the animated system when
modifying the spec.

o to continue the on-going scenerio after fixing a minor
bug.

o for immersive modeling.

LIVE tastes
animation over modifications

Conventional Animation

Modification

Initial Spec T, > Modified Spec

VDMPad

State1

State1

State?

)Op1

State1’

State?2'

State3'

Op1

Op2

State?

)Op1

@ Modification

State2'

State3'

)OpZ

LIVE tastes

visual presentation

[]
&

® VDMPad

c

localhost:8085

VDMPad

Tomohiro

powered by Squeak Smalltalk with VOMJ

about VDMPad

types

Item = <BEER> | <WINE>;
Bag = map Item to nat1;
Order = seq of (Item * nat1);

valuee

I->}
Menu Handle
stock : Bag
init s == s = mk_Inventory(empty)
end
operations

Buy : Order ==> () .
Bluy(order) == for mk_(item, num) in order do
et

current_num =
if itemin set dom stock
then stock(item)
else

in
stock := stock ++ { item |-> current_num + num } ;

DEFAULT

{<BEER> |-> 10, <WINE> |-> 3}

BEER | WINE |

10 3

Initialize

-

-
Buy([mk_(<BEER>, , mk_(<WINE>,
Seﬁ(({mk é<BEER>,)]; . -

evaluate

Lo

-~
0
E -

Specification
Editor

State Area

Workspace

Return Value

Message
Area

LIVE tastes
visual presentation

type value diagram
real 1.0 1
symbol <symbols> symbols I
seq of char "abc" "abc"
seq [1, 2, 3, 4] 1234
set {1, 2, 3, 4} 12

34
map {<one> |-> 1, <two> P =

] 2
product mk_tuple(l, "abc") 1

"abc”
composite ~ mk_Record (1, Record

"abe") 1
"abc”

token mk_token (0) token

LIVE tastes
continuous unit testing

e always run unit tests after evaluation

o as a discipline in trial and error process

o to detect degrading by trial and error

LIVE tastes
continuous unit testing

Buy([mk_(<BEER>, 10), mk_(<WINE>, 3)])
Seﬁ(([[mk_é<BEER>, 2)];

evaluate

make it a testcase

0 /
“make it a testcase ” Button
0

OK: Buy([mk_(<BEER>, 10), mk_(<WINE>, 3)]) .
OK: Sell(Imk_(<BEER>, 2)]) Results of Unit Tests

LIVE tastes
continuous unit testing

OK: Buy([mk_(<BEER>, 10), mk_(<WINE>, 3)])

prestates : {"DEFAULT "stock™:"{l->}"}
expression : Buy([mk_(<BEER>, 10), mk_(<WINE>, 3)])

value : ()
poststates : {"DEFAULT "stock":"{<BEER> |-> 10, <WINE> |-> 3}"}

OK: Sell([mk_(<BEER>, 2)])

prestates : {"DEFAULT "stock":"{<BEER> |-> 10, <WINE> |-> 3}"}

expression : Sell([mk_(<BEER>, 2)])

value : ()
poststates : {"DEFAULT "stock":"{<BEER> |-> 8, <WINE> |-> 3}"}

LIVE tastes
permissive checking

e can optionally disable runtime checking

o to simulate "bad" scenario

o to focus on more important issue

not for regular use!

Lightweight

Lightweight IDE

VDMPad is lightweight in the senses of

e no installation, less footprints, quick launch
e |ess setup to start with a new model

e simple user interfaces

e small and focused functionality

Lightweight IDE
no installation, less footprints, quick launch

e \Web-based IDE

o a free server available online.
o open
and then you have the IDE before your eyes.

e runs on Firefox browser and Google Chrome

Lightweight IDE
less setup to start with a new model

e no need for user registration
o Nothing is stored on the server.

e Nno need for source trees
o Everything is stored in your browser.

e spec and animation contexts are
automatically saved into your browser

All you need to write a spec is on the browser's
localStorage (HTMLS's standard key-value DB)

Lightweight IDE
simple user interface

[]
&

[]
(o

Men

VDMPad Tomohiro

localhost:8085

VDMPad

types
Item = <BEER> | <WINE>;

powered by Squeak Smalltalk with VOMJ
about VDMPad

Bag = map Item to nat1;
Order = seq of (Item * nat1);
valiac
I->}
u Handle
stock : Bag
init s == s = mk_Inventory(empty)
end
operations

Buy : Order ==> () .
Bluy(order) == for mk_(item, num) in order do
et

current_num =
if itemin set dom stock
then stock(item)
else

in
stock := stock ++ { item |-> current_num + num } ;

DEFAULT
StOCk {<BEER> |-> 10, <WINE> |-> 3}
BEER | WINE |
10 3
_nitalize
-
-
B k_(<BEER>, , mk_(<WINE>,
SN (SREERS 2y i (<WINE>. D)
evaluate
-
-
0
0 -

Specification
Editor

State Area

Workspace

Return Value

Message
Area

Lightweight IDE
small and focused functionality

e The "evaluate" button is the only operation to
iInvoke functionality.
o edit a specification
o change the state
o eval an expression

e menu to manage stored animations and
options
o animations: load, save, delete, export
o options: 5 checkboxes

Conclusion

Conclusion

e exploratory specification
o trial and error
to obtain the first grip on the right abstraction

e L|VE tastes

o more freedom to try

o immersive modeling

o discipline by continuous unit testing
o occasionally permissive

e lightweight IDE

o good for introductory education
o always ready to go

Thank you.

