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Introduction

Motivation
The Problem

I Safety Critical control applications require mathematematical proof of
correctness

I FPGA processing technology increasingly used in PLCs

I Proofs for Von Neumann architectures not applicable to FPGA
architectures

I New proofs and techniques are needed to verify next generation of
Safety Critical PLCs

Our Solution
I Hardware Descriptions written in semantically elegant languages are

amenable to automatic translation to theorem proving environments
I HDL - Bluespec SystemVerilog (BSV)
I Theorem Prover - Prototype Verification System (PVS)

I This substantially reduces effort required for formal verification
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Introduction
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Figure: BAPIP Architectural Overview
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Preliminaries

Hardware Considerations

Programmable Logic Controllers
(PLCs)

I Reputation for reliability

I “Ladder Logic” programs

I Safety critical applications

Field Programmable Gate Arrays
(FPGAs)

I Reprogrammable networks of
logic blocks

I Alternative to Von Neumann
architectures

Figure: LIMITS ALARM PLC FB
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Preliminaries

Bluespec SystemVerilog (BSV)

I An abstract, semantically elegant Hardware Description Language (HDL)

I Compiles to Verilog

I Modules are composed of state declarations, rules, and methods

I BSV uses a guarded action semantic for register writes

I All register writes are concurrent (unless declared otherwise)

I Rules and methods are atomic, it’s all or nothing!

I The user may specify an order of precedence for rules, resolving
ambiguous behaviour when rule guards are not mutually exclusive.
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Preliminaries

Prototype Verification System (PVS)

I Open source emacs plugin
I Specification language based in higher order logic
I Proof environment with high mechanicity and legibility

I When prompted, PVS derives proof obligations from specifications. The
user then specifies proof tactics to discharge obligations

I Track record of safety critical embedded systems verification
I AAMP5 avionics microprocessor
I Darlington nuclear power plant emergency shutdown system
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Preliminaries

Logical Basis for Translation

I The underlying logical model of a BSV
module is a Kripke Structure

K = (S , s0,T , L)

I S is the set of all program states

I s0 ∈ S is the initial state

I T is a left-total transition relation:

T ⊆ S × S

I L is a labelling function:

L : S → 2AP

I where AP is the set of atomic
propositions

s0
[p, q]

s1
[¬p, q]

s2
[p,¬q]

s3
[¬p,¬q]

An Example Kripke Structure
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Preliminaries

Timed vs Untimed Semantics
BSV has two semantic properties governing execution.

I Untimed (or execution step)
semantics

I Relates actions to execution
steps

I In instances of ambiguous
action precedence, one is
arbitrarily but deterministically
chosen to fire.

I Timed (or clock cycle) semantics
I Relates execution steps to clock

cycles
I Composes a set of execution

steps which can execute in
parallel.
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Preliminaries

Comparison with Previous Approaches

I Previous logical description first proposed by Richards and Lester (2011)
I Stated aim was syntactic similarity between source BSV and product PVS
I Addresses untimed semantic, but not timed semantic.
I Transition predicates are universal disjunction of actions

I Current work originally automated R&L method, which was found
insufficient for certain problems

I We attempt to faithfully duplicate BSV’s action arbitration
I Timed semantic is addressed
I We require ambigious behaviours to be constrained at the source code

level.
I Consequently, we can relate behaviours to clock cycles.
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Preliminaries

Comparison with Previous Approaches ctd.
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BSV to PVS

Generating a State Theory

BSV

Reg#(Int#(16)) foo <- mkReg(5);

Reg#(Bool) bar <- mkReg(False);

PVS

MyModule : type =

[# foo: Int(16)

, bar: bool #]

MyModule_var : var MyModule

mkModule (MyModule_var) : bool

= MyModule_var‘foo = 5

AND MyModule_var‘bar = False
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BSV to PVS

Generating a State Transition Theory

BSV

(* descending_urgency =

"auto_stop, inc" *)

rule auto_stop (foo == 5);

bar <= false;

endrule

rule inc (bar);

foo <= foo + 1;

endrule

method Action start() if (!bar);

bar <= true;

foo <= 0;

endmethod

PVS

pre, post : var MyModule

MyModule_t (pre, post) : bool =

( post = pre with

[ foo := if

(bar AND (NOT (foo == 5)))

then pre‘foo + 1

else pre‘foo

endif

, bar := if (foo == 5)

then False

else pre‘bar

endif

]

)

pre, post : var MyModule

MyModule_t_start

(pre, post) : bool =

( post = pre with

[ foo := if (NOT bar)

then 0

else if (bar AND

(NOT (foo == 5)))

then pre‘foo + 1

else pre‘foo

endif

endif

, bar := if (NOT bar)

then True

else if (foo == 5)

then False

else pre‘bar

endif

endif

]

)
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BSV to PVS

BAPIP: the Bluespec and PVS Interlanguage Processor
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Figure: BAPIP Architectural Overview
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BSV to PVS

Limits Alarm: General Overview
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BSV to PVS

Limits Alarm: PLC Implementation
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BSV to PVS

Case Study: Limits Alarm Tabular Specifications

Condition QH
X > H True

(H − EPS) ≤ X ≤ H NC

X < (H − EPS) False

Condition QL
X < L True

L ≤ X ≤ (L + EPS) NC

X > (L + EPS) False

Condition Q
QL ∨ QH True

¬(QL ∨ QH) False
assuming (EPS/2) > 0

Figure: Limits Alarm Tabular Specification for QH, QL, and Q

Nicholas Moore and Mark Lawford

Correct Safety Critical Hardware Descriptions 16 / 20



Introduction Preliminaries BSV to PVS Conclusion

BSV to PVS

Proving Limits Alarm

I Both functional and Consistency proofs required.

I Consistency proofs automatically generated with tactics

I Functional proofs dischargeable with general-purpose strategy (grind).

LIMITS_ALARM_Req : THEOREM

LIMITS_ALARM_t_set_Alarms (s(t), s(next(t)), x(t), h(t), l(t), eps(t))

and (eps(t)/2 > 0)

and f_q(qh,ql,q)(next(t))

and f_ql(x,l,eps,ql)(t)

and f_qh(x,h,eps,qh)(t)

and q(t) = LIMITS_ALARM_get_q(s(t))

and ql(t) = s(t)‘low_alarm‘q

and qh(t) = s(t)‘high_alarm‘q

implies qh(next(t)) = LIMITS_ALARM_get_qh(s(next(t)))

and ql(next(t)) = LIMITS_ALARM_get_ql(s(next(t)))

and q(next(t)) = LIMITS_ALARM_get_q(s(next(t)))
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Conclusion

A Brief Survey of Related Works

I PLC verification efforts
I Alonso et. al. [2009]
I Economakos & Economakos [2012]
I Pang et. al. [2013, 2015, 2016]

I Methods for Translating PLCs and BSV into COQ
I Blech & Biha [2013]
I Braibant & Chlipala [2013]
I Vijayaraghavin et. al. [2015]

I Other BSV verification Methods
I Oliver [2006]
I Singh & Shukla [2008]
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Conclusion

Future Work
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Figure: BAPIP Architectural Overview
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Conclusion

Any Questions?
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