
Introduction Preliminaries BSV to PVS Conclusion

Correct Safety Critical Hardware Descriptions
via Static Analysis and Theorem Proving

Nicholas Moore and Mark Lawford

May 27, 2017

FormaliSE: FME Workshop on Formal Methods in Software Engineering

Nicholas Moore and Mark Lawford

Correct Safety Critical Hardware Descriptions 1 / 20

Introduction Preliminaries BSV to PVS Conclusion

Introduction

Motivation
The Problem

I Safety Critical control applications require mathematematical proof of
correctness

I FPGA processing technology increasingly used in PLCs

I Proofs for Von Neumann architectures not applicable to FPGA
architectures

I New proofs and techniques are needed to verify next generation of
Safety Critical PLCs

Our Solution
I Hardware Descriptions written in semantically elegant languages are

amenable to automatic translation to theorem proving environments
I HDL - Bluespec SystemVerilog (BSV)
I Theorem Prover - Prototype Verification System (PVS)

I This substantially reduces effort required for formal verification

Nicholas Moore and Mark Lawford

Correct Safety Critical Hardware Descriptions 2 / 20

Introduction Preliminaries BSV to PVS Conclusion

Introduction

Overall Project Direction

BSV
Input Files

BSV Parser

BSV Syntax Tree

BSV Generator

BSV
Output

BSV2PVS

PVS2BSV

PVS Syntax Tree

PVS Parser

Restricted
Subset
of PVS

PVS Generator

PVS
Output

Figure: BAPIP Architectural Overview

Nicholas Moore and Mark Lawford

Correct Safety Critical Hardware Descriptions 3 / 20

Introduction Preliminaries BSV to PVS Conclusion

Preliminaries

Hardware Considerations

Programmable Logic Controllers
(PLCs)

I Reputation for reliability

I “Ladder Logic” programs

I Safety critical applications

Field Programmable Gate Arrays
(FPGAs)

I Reprogrammable networks of
logic blocks

I Alternative to Von Neumann
architectures

Figure: LIMITS ALARM PLC FB
Nicholas Moore and Mark Lawford

Correct Safety Critical Hardware Descriptions 4 / 20

Introduction Preliminaries BSV to PVS Conclusion

Preliminaries

Bluespec SystemVerilog (BSV)

I An abstract, semantically elegant Hardware Description Language (HDL)

I Compiles to Verilog

I Modules are composed of state declarations, rules, and methods

I BSV uses a guarded action semantic for register writes

I All register writes are concurrent (unless declared otherwise)

I Rules and methods are atomic, it’s all or nothing!

I The user may specify an order of precedence for rules, resolving
ambiguous behaviour when rule guards are not mutually exclusive.

Nicholas Moore and Mark Lawford

Correct Safety Critical Hardware Descriptions 5 / 20

Introduction Preliminaries BSV to PVS Conclusion

Preliminaries

Prototype Verification System (PVS)

I Open source emacs plugin
I Specification language based in higher order logic
I Proof environment with high mechanicity and legibility

I When prompted, PVS derives proof obligations from specifications. The
user then specifies proof tactics to discharge obligations

I Track record of safety critical embedded systems verification
I AAMP5 avionics microprocessor
I Darlington nuclear power plant emergency shutdown system

Nicholas Moore and Mark Lawford

Correct Safety Critical Hardware Descriptions 6 / 20

Introduction Preliminaries BSV to PVS Conclusion

Preliminaries

Logical Basis for Translation

I The underlying logical model of a BSV
module is a Kripke Structure

K = (S , s0,T , L)

I S is the set of all program states

I s0 ∈ S is the initial state

I T is a left-total transition relation:

T ⊆ S × S

I L is a labelling function:

L : S → 2AP

I where AP is the set of atomic
propositions

s0
[p, q]

s1
[¬p, q]

s2
[p,¬q]

s3
[¬p,¬q]

An Example Kripke Structure

Nicholas Moore and Mark Lawford

Correct Safety Critical Hardware Descriptions 7 / 20

Introduction Preliminaries BSV to PVS Conclusion

Preliminaries

Timed vs Untimed Semantics
BSV has two semantic properties governing execution.

I Untimed (or execution step)
semantics

I Relates actions to execution
steps

I In instances of ambiguous
action precedence, one is
arbitrarily but deterministically
chosen to fire.

I Timed (or clock cycle) semantics
I Relates execution steps to clock

cycles
I Composes a set of execution

steps which can execute in
parallel.

S
T
E
P

S
T
E
P

S
T
E
P

Clock Cycle

S
T
E
P

S
T
E
P

S
T
E
P

Clock Cycle

S
T
E
P

S
T
E
P

S
T
E
P

Clock Cycle

E
xecu

tion

Nicholas Moore and Mark Lawford

Correct Safety Critical Hardware Descriptions 8 / 20

Introduction Preliminaries BSV to PVS Conclusion

Preliminaries

Comparison with Previous Approaches

I Previous logical description first proposed by Richards and Lester (2011)
I Stated aim was syntactic similarity between source BSV and product PVS
I Addresses untimed semantic, but not timed semantic.
I Transition predicates are universal disjunction of actions

I Current work originally automated R&L method, which was found
insufficient for certain problems

I We attempt to faithfully duplicate BSV’s action arbitration
I Timed semantic is addressed
I We require ambigious behaviours to be constrained at the source code

level.
I Consequently, we can relate behaviours to clock cycles.

Nicholas Moore and Mark Lawford

Correct Safety Critical Hardware Descriptions 9 / 20

Introduction Preliminaries BSV to PVS Conclusion

Preliminaries

Comparison with Previous Approaches ctd.

A
C
T
I
O
N

A
C
T
I
O
N

A
C
T
I
O
N

A
C
T
I
O
N

Universal
Disjunction
Transition

STATE

. . .

STATE STATE STATE. . . Set of Possible
Output States

A
C
T
I
O
N

A
C
T
I
O
N

A
C
T
I
O
N

A
C
T
I
O
N

Universal
Disjunction
Transition

STATE

. . .

STATE STATE STATE

STATE STATE STATE

STATE STATE STATE

. . .

. . .

. . .

...
Set of Sets of
Possible States

T
im

e

Previous Approach

A
C
T
I
O
N

A
C
T
I
O
N

A
C
T
I
O
N

Action
Arbitration
Transition

STATE

A
C
T
I
O
N

A
C
T
I
O
N

A
C
T
I
O
N

Action
Arbitration
Transition

STATE

STATE

Current Approach

Nicholas Moore and Mark Lawford

Correct Safety Critical Hardware Descriptions 10 / 20

Introduction Preliminaries BSV to PVS Conclusion

BSV to PVS

Generating a State Theory

BSV

Reg#(Int#(16)) foo <- mkReg(5);

Reg#(Bool) bar <- mkReg(False);

PVS

MyModule : type =

[# foo: Int(16)

, bar: bool #]

MyModule_var : var MyModule

mkModule (MyModule_var) : bool

= MyModule_var‘foo = 5

AND MyModule_var‘bar = False

Nicholas Moore and Mark Lawford

Correct Safety Critical Hardware Descriptions 11 / 20

Introduction Preliminaries BSV to PVS Conclusion

BSV to PVS

Generating a State Theory

BSV

Reg#(Int#(16)) foo <- mkReg(5);

Reg#(Bool) bar <- mkReg(False);

PVS

MyModule : type =

[# foo: Int(16)

, bar: bool #]

MyModule_var : var MyModule

mkModule (MyModule_var) : bool

= MyModule_var‘foo = 5

AND MyModule_var‘bar = False

Nicholas Moore and Mark Lawford

Correct Safety Critical Hardware Descriptions 11 / 20

Introduction Preliminaries BSV to PVS Conclusion

BSV to PVS

Generating a State Transition Theory

BSV

(* descending_urgency =

"auto_stop, inc" *)

rule auto_stop (foo == 5);

bar <= false;

endrule

rule inc (bar);

foo <= foo + 1;

endrule

method Action start() if (!bar);

bar <= true;

foo <= 0;

endmethod

PVS

pre, post : var MyModule

MyModule_t (pre, post) : bool =

(post = pre with

[foo := if

(bar AND (NOT (foo == 5)))

then pre‘foo + 1

else pre‘foo

endif

, bar := if (foo == 5)

then False

else pre‘bar

endif

]

)

pre, post : var MyModule

MyModule_t_start

(pre, post) : bool =

(post = pre with

[foo := if (NOT bar)

then 0

else if (bar AND

(NOT (foo == 5)))

then pre‘foo + 1

else pre‘foo

endif

endif

, bar := if (NOT bar)

then True

else if (foo == 5)

then False

else pre‘bar

endif

endif

]

)

Nicholas Moore and Mark Lawford

Correct Safety Critical Hardware Descriptions 12 / 20

Introduction Preliminaries BSV to PVS Conclusion

BSV to PVS

Generating a State Transition Theory

BSV

(* descending_urgency =

"auto_stop, inc" *)

rule auto_stop (foo == 5);

bar <= false;

endrule

rule inc (bar);

foo <= foo + 1;

endrule

method Action start() if (!bar);

bar <= true;

foo <= 0;

endmethod

PVS

pre, post : var MyModule

MyModule_t (pre, post) : bool =

(post = pre with

[foo := if

(bar AND (NOT (foo == 5)))

then pre‘foo + 1

else pre‘foo

endif

, bar := if (foo == 5)

then False

else pre‘bar

endif

]

)

pre, post : var MyModule

MyModule_t_start

(pre, post) : bool =

(post = pre with

[foo := if (NOT bar)

then 0

else if (bar AND

(NOT (foo == 5)))

then pre‘foo + 1

else pre‘foo

endif

endif

, bar := if (NOT bar)

then True

else if (foo == 5)

then False

else pre‘bar

endif

endif

]

)

Nicholas Moore and Mark Lawford

Correct Safety Critical Hardware Descriptions 12 / 20

Introduction Preliminaries BSV to PVS Conclusion

BSV to PVS

Generating a State Transition Theory

BSV

(* descending_urgency =

"auto_stop, inc" *)

rule auto_stop (foo == 5);

bar <= false;

endrule

rule inc (bar);

foo <= foo + 1;

endrule

method Action start() if (!bar);

bar <= true;

foo <= 0;

endmethod

PVS

pre, post : var MyModule

MyModule_t (pre, post) : bool =

(post = pre with

[foo := if

(bar AND (NOT (foo == 5)))

then pre‘foo + 1

else pre‘foo

endif

, bar := if (foo == 5)

then False

else pre‘bar

endif

]

)

pre, post : var MyModule

MyModule_t_start

(pre, post) : bool =

(post = pre with

[foo := if (NOT bar)

then 0

else if (bar AND

(NOT (foo == 5)))

then pre‘foo + 1

else pre‘foo

endif

endif

, bar := if (NOT bar)

then True

else if (foo == 5)

then False

else pre‘bar

endif

endif

]

)

Nicholas Moore and Mark Lawford

Correct Safety Critical Hardware Descriptions 12 / 20

Introduction Preliminaries BSV to PVS Conclusion

BSV to PVS

BAPIP: the Bluespec and PVS Interlanguage Processor

BSV
Input Files

BSV Parser

BSV Syntax Tree

BSV Generator

BSV
Output

BSV2PVS

PVS Syntax Tree

PVS Generator

PVS
Output

Figure: BAPIP Architectural Overview
Nicholas Moore and Mark Lawford

Correct Safety Critical Hardware Descriptions 13 / 20

Introduction Preliminaries BSV to PVS Conclusion

BSV to PVS

Limits Alarm: General Overview

Nicholas Moore and Mark Lawford

Correct Safety Critical Hardware Descriptions 14 / 20

Introduction Preliminaries BSV to PVS Conclusion

BSV to PVS

Limits Alarm: PLC Implementation

Nicholas Moore and Mark Lawford

Correct Safety Critical Hardware Descriptions 15 / 20

Introduction Preliminaries BSV to PVS Conclusion

BSV to PVS

Case Study: Limits Alarm Tabular Specifications

Condition QH
X > H True

(H − EPS) ≤ X ≤ H NC

X < (H − EPS) False

Condition QL
X < L True

L ≤ X ≤ (L + EPS) NC

X > (L + EPS) False

Condition Q
QL ∨ QH True

¬(QL ∨ QH) False
assuming (EPS/2) > 0

Figure: Limits Alarm Tabular Specification for QH, QL, and Q

Nicholas Moore and Mark Lawford

Correct Safety Critical Hardware Descriptions 16 / 20

Introduction Preliminaries BSV to PVS Conclusion

BSV to PVS

Proving Limits Alarm

I Both functional and Consistency proofs required.

I Consistency proofs automatically generated with tactics

I Functional proofs dischargeable with general-purpose strategy (grind).

LIMITS_ALARM_Req : THEOREM

LIMITS_ALARM_t_set_Alarms (s(t), s(next(t)), x(t), h(t), l(t), eps(t))

and (eps(t)/2 > 0)

and f_q(qh,ql,q)(next(t))

and f_ql(x,l,eps,ql)(t)

and f_qh(x,h,eps,qh)(t)

and q(t) = LIMITS_ALARM_get_q(s(t))

and ql(t) = s(t)‘low_alarm‘q

and qh(t) = s(t)‘high_alarm‘q

implies qh(next(t)) = LIMITS_ALARM_get_qh(s(next(t)))

and ql(next(t)) = LIMITS_ALARM_get_ql(s(next(t)))

and q(next(t)) = LIMITS_ALARM_get_q(s(next(t)))

Nicholas Moore and Mark Lawford

Correct Safety Critical Hardware Descriptions 17 / 20

Introduction Preliminaries BSV to PVS Conclusion

Conclusion

A Brief Survey of Related Works

I PLC verification efforts
I Alonso et. al. [2009]
I Economakos & Economakos [2012]
I Pang et. al. [2013, 2015, 2016]

I Methods for Translating PLCs and BSV into COQ
I Blech & Biha [2013]
I Braibant & Chlipala [2013]
I Vijayaraghavin et. al. [2015]

I Other BSV verification Methods
I Oliver [2006]
I Singh & Shukla [2008]

Nicholas Moore and Mark Lawford

Correct Safety Critical Hardware Descriptions 18 / 20

Introduction Preliminaries BSV to PVS Conclusion

Conclusion

Future Work

BSV
Input Files

BSV Parser

BSV Syntax Tree

BSV Generator

BSV
Output

BSV2PVS

PVS2BSV

PVS Syntax Tree

PVS Parser

Restricted
Subset
of PVS

PVS Generator

PVS
Output

Figure: BAPIP Architectural Overview

Nicholas Moore and Mark Lawford

Correct Safety Critical Hardware Descriptions 19 / 20

Introduction Preliminaries BSV to PVS Conclusion

Conclusion

Any Questions?

Nicholas Moore and Mark Lawford

Correct Safety Critical Hardware Descriptions 20 / 20

	Introduction
	Introduction

	Preliminaries
	Preliminaries

	BSV to PVS
	BSV to PVS

	Conclusion
	Conclusion

