# On the Three-way Interaction Optimizing Feature Based Systems Verification

#### Laura Semini

joint work with Alessandro Fantechi

ISTI-CNR, Pisa, Italy Universita' di Pisa, Italy Universita' di Firenze, Italy

Formalise 2017, Buenos Aires

## The feature interaction problem



The feature interaction problem has been recognized as a general problem of software engineering.

"A feature interaction occurs when the behavior of one feature is affected by the presence of another".

## Optimising feature interaction detection



One of the sensitive issues is the capability to make pairwise verification with respect to verify all possible combination, so to achieve a quadratic, in the number of features, cost instead of an exponential cost of a complete verification.

# The Example

| AC         | Air change                                             | 3 |
|------------|--------------------------------------------------------|---|
|            | If it is not freezing, at 10:00 a.m. open the windows. |   |
| <b>EAC</b> | End of air change                                      |   |
|            | At 10:30 a.m. close the windows.                       |   |
| CW         | Close window with rain                                 |   |
|            | Close the windows when the rain sensor is triggered.   |   |
| DP         | Danger prevention                                      |   |
|            | Open the main door and open the windows when           |   |
|            | smoke is sensed.                                       |   |
| IA         | Intruder alarm                                         | 1 |
|            | Raise an intruder alarm when the main door is open     |   |
|            | and the alarm is ON.                                   |   |
| RIA        | Reation to intruder alarm                              | 2 |
|            | If an intruder alarm has been raises, then close all   |   |
|            | doors and windows.                                     |   |

### The Model for the Features

Syntax: 
$$F = \langle C, [A] \rangle$$

Semantics: 
$$s \models C \Rightarrow s \xrightarrow{A} s'$$

Parallel composition: interleaving  $F_1 || \dots || F_n$ 

 $AC = \langle \sim freezing \land 10:00 \ a.m., \ [open the windows] \rangle$   $IA = \langle main \ door \ open \land alarm \ on, \ [raise \ an \ intruder \ alarm] \rangle$   $RIA = \langle intruder \ alarm, \ [close \ the \ main \ door, \ close \ windows] \rangle$ 

## The Result

In our setting,

any 3-way interaction

is due

to the interaction between 2 of the considered features.

## Limitations

True 3-way interactions can exist when:

- Features are tags that drive conditional compilation in a java-like program.
- Features have to compete for the usage of shared (physical) resources:
   non-functional interactions.