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An Information Flow Perspective
I Linux Operating Systems
Containers of information: objects in the system able to store
information originating from users, the OS environment, etc.:

I �les
I pipes
I network sockets
I message queues
I processes’ memory space
I more?

Data �ow from one container to another
I when reading a �le
I when storing a message in a message queue
I etc.
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The information must flow

Userspace

Syscall interface

Kernelspace

Hardware

Process

Kernel thread

I User processes are
isolated

I Have no privileges
I Must use System

Calls to perform
privileged operations

I Syscalls cause information �ows
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Information Flow Trackers for Linux

I Laminar Porter et al., “Practical Fine-Grained Information
Flow Control Using Laminar”

I KBlare Zimmermann, Mé, and Bidan, “An Improved Reference
Flow Control Model for Policy-Based Intrusion Detection”

I Weir Nadkarni et al., “Practical DIFC enforcement on Android”
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Tracking flows with taint propagation

I Each container has a label identifying its initial content
I Each time a �ow occurs, the destination label is updated with

the source label

I Example: head file | wc

�le

/bin/head

sh

/bin/wc
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Tracking flows with taint propagation

I Each container has a label identifying its initial content
I Each time a �ow occurs, the destination label is updated with

the source label

I Example: head file | wc

�le

/bin/head

head

|

/bin/wc

wc . . .
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Example 1: read

fs/read_write.c
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Graphs and execution paths

I One system call = One graph
I One possible execution path = One path from INIT to END
I One instruction = One node
I One sequence or jump = One edge

Extracted directly from the GCC compiler

Not exactly C but GIMPLE: intermediate representation

In Static Single Assignment form1

1Cytron et al., “E�ciently Computing Static Single Assignment Form and the
Control Dependence Graph”.
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INIT

<ssa 799>.5 = capable(26)

[<ssa 799>.5  !=  0]

[!<ssa 799>.5  !=  0]

tty_vhangup_self()

<ssa 800>.1 = PHI <0, -1>

<ssa 800>.1

END

/*
* This routine simulates a hangup
* on the tty, to arrange that
* users are given clean terminals
* at login time.
*/

SYSCALL_DEFINE0(vhangup)
{

if (capable(CAP_SYS_TTY_CONFIG)) {
tty_vhangup_self();
return 0;

}
return -EPERM;

}
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Anatomy of a syscall

Syscall = Entry-point of a user process in the kernel

1. Basic checks
2. Advanced checks / lock taking
3. Linux Security Modules hooks
4. Actual operation
5. Lock release
6. Return

Many shortcuts exist, in case of errors.
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The Linux Security Modules Framework

LSM provides security kernel developpers with:
I Additional general-purpose security �elds in kernel data

structures (inodes, tasks, etc.)
I Hooks strategically placed in the syscalls code to register

callbacks

I Expected use: LSMs store their state in the �elds and use the
hooks to

I manage the state
I authorize security-sensitive operations
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Our problem

Information �ow trackers can only observe the execution of syscalls
when called through a LSM hook.

If a syscall can generate an information �ow without going through
a LSM hook, that �ow will be missed.

Important property to ensure a correct �ow tracking
There must be a LSM hook in each execution path leading to the
production of a �ow in system calls.
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Previous works

I Zhang, Edwards, and Jaeger, “Using CQUAL for Static Analysis
of Authorization Hook Placement”

I Jaeger, Edwards, and Zhang, “Consistency analysis of
authorization hook placement in the Linux security modules
framework”

I Ganapathy, Jaeger, and Jha, “Automatic Placement of
Authorization Hooks in the Linux Security Modules
Framework”

I Muthukumaran, Jaeger, and Ganapathy, “Leveraging "choice" to
automate authorization hook placement”
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Finding problematic paths

Paths
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Paths

Paths�ows
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Finding problematic paths

Paths

Paths�ows PathsLSM
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PathsPaths

P
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Finding problematic paths

PathsPaths

P

Paths�ows PathsLSM

P is the set of apparently valid paths generating �ows not covered
by a LSM hooks =⇒ paths to analyze
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Instructions causing flows and LSM hooks

LSM hooks can be automatically found in the code of system calls

Instructions causing �ows less so. . .

Several heuristics:
I Use of locking
I End of checks
I Calls to architecture/hardware-dependent functions
I Dynamic calls through function pointers
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Several standard problems

Some paths are actually
impossible: we should exclude
them

Loops mean there are an in�nity
of paths of �nite length: we
cannot analyze them all



Dealing with impossible paths and loops
PathsPaths

Paths�ows

P

PathsLSM

Property (Complete mediation)
The complete mediation holds if, and only if: P ⊆ I, i.e. all the
execution paths that perform an information �ow and are not

controlled by the information �ow monitor since they do not contain a

LSM hook are impossible according to the static analysis.
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Dealing with impossible paths and loops
PathsPaths

Paths�ows

P

PathsLSM

Paths

I

Paths

Property (Complete mediation)
The complete mediation holds if, and only if: P ⊆ I, i.e. all the
execution paths that perform an information �ow and are not

controlled by the information �ow monitor since they do not contain a

LSM hook are impossible according to the static analysis.



Dealing with impossible paths and loops
Paths

Acyclic
paths
in P

Paths

Paths�ows

P
PathsLSM

Paths

I

Paths

I Since P may be in�nite, we need a way to make the analysis of the
subset of acyclic paths in P su�cient to conclude on all paths in P.
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Analysis outline
General idea:

I Analyze each system call independently
I In each system call,

1. identify nodes producing �ows
2. trace the paths back up until reaching either the beginning of

the function or a LSM hook
3. discard the paths reaching a LSM hook (paths in PathsLSM )
4. when reaching a loop, jump to the outer-most loop header to

select only acyclic paths
I For each analyzed path,

I go through each node and edge in order
I gather constraints on variables from nodes and guards on edges

in a con�guration
I when reaching a con�guration with inconsistent constraints,

declare the path as impossible
OR when reaching the end of the path, declare it as possible
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Satisfiability

a.1 = PHI <0, a.8>

f(a.1)

<ssa 1>.6 = f(a.1)

[<ssa 1>.6  != a.1] [!<ssa 1>.6 != a.1]

a.11 = PHI <a.1>

[a.11 > 10]

[!a.11 > 10]

__printf_chk(1, &"fixpoint after 10\n")

...

Satis�ability
Current node: a.1 = PHI<0,a.8>

Set of constraints:
{a.1 = 0}

Satis�able: Yes
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a.1 = PHI <0, a.8>

f(a.1)

[<ssa 1>.6  != a.1] [!<ssa 1>.6 != a.1]

a.11 = PHI <a.1>

[a.11 > 10]

[!a.11 > 10]

__printf_chk(1, &"fixpoint after 10\n")

...

Satis�ability
Current node: <ssa 1>.6 = f(a.1)

Set of constraints:
{a.1 = 0}

Satis�able: Yes



Satisfiability

a.11 = PHI <a.1>

a.1 = PHI <0, a.8>

<ssa 1>.6 = f(a.1)

f(a.1)

[<ssa 1>.6  != a.1] [!<ssa 1>.6 != a.1]

[a.11 > 10]

[!a.11 > 10]

__printf_chk(1, &"fixpoint after 10\n")

...

Satis�ability
Current edge: [!<ssa 1>.6 != a.1]

Set of constraints:{
a.1 = 0,

<ssa 1>.6 6= a.1

}
Satis�able: Yes



Satisfiability

a.11 = PHI <a.1>

a.1 = PHI <0, a.8>

<ssa 1>.6 = f(a.1)

f(a.1)

[<ssa 1>.6  != a.1] [!<ssa 1>.6 != a.1]

[a.11 > 10]

[!a.11 > 10]

__printf_chk(1, &"fixpoint after 10\n")

...

Satis�ability
Current node: a.11 = PHI<a.1>

Set of constraints:
a.1 = 0,

<ssa 1>.6 6= a.1,
a.11 = a.1


Satis�able: Yes



Satisfiability

a.11 = PHI <a.1>

a.1 = PHI <0, a.8>

<ssa 1>.6 = f(a.1)

f(a.1)

[<ssa 1>.6  != a.1] [!<ssa 1>.6 != a.1]

[a.11 > 10]

[!a.11 > 10]

__printf_chk(1, &"fixpoint after 10\n")

...

Satis�ability
Current edge: [a.11 > 10]

Set of constraints:
a.1 = 0,

<ssa 1>.6 6= a.1,
a.11 = a.1,
a.11 > 10


Satis�able: No =⇒ path impossible



Satisfiability

f(a.1)

a.1 = PHI <0, a.8>

<ssa 1>.6 = f(a.1)

[<ssa 1>.6  != a.1] [!<ssa 1>.6 != a.1]

a.11 = PHI <a.1>

[a.11 > 10]

[!a.11 > 10]

__printf_chk(1, &"fixpoint after 10\n")

...

Satis�ability

Set of constraints:
a.1 = 0,

<ssa 1>.6 6= a.1,
a.11 = a.1,
a.11 > 10


Satis�able: No =⇒ path impossible

The satis�ability is veri�ed by
SMT-solver Yices 2.

2Bruno Dutertre and Leonardo de Moura. The Yices SMT solver. Tech. rep.
SRI International, 2006.



Handling loops

f(a.1)

a.8 = a.1 + 1

a.1 = PHI <0, a.8>

<ssa 1>.6 = f(a.1)

[<ssa 1>.6  != a.1] [!<ssa 1>.6 != a.1]

a.11 = PHI <a.1>

[a.11 > 10]

[!a.11 > 10]

__printf_chk(1, &"fixpoint after 10\n")

Loop

Loop header

Exit node

Entry node

Backward edge

For this example, this is

the interesting node from

which we construct a path

towards the beginning of

the function.

Dealing with loops

Loops have a special syntax and
are detected by GCC
We de�ne a equivalence
relation on paths : two paths are
equivalent if they are identical up
to their cycles.
We analyze only acyclic paths
(normal form)

When there is a loop, we remove
constraints about all variables
modi�ed inside the loop. =⇒
The number of iterations of loops
does not change the resulting
con�guration.
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Implementation

The analysis is implemented as Kayrebt::PathExaminer2, a GCC
4.8 plugin3,4.

No extraction of CFGs needed: the analysis works on GCC’s CFG.

Deep insertion inside the compilation process: after the optimized
phase.

Needs a previous annotation of nodes causing information �ows and
inlinable functions (can be done with Kayrebt::Callgraphs)

3Richard Matthew Stallman and the GCC developer community. Using the
GNU Compiler Collection (GCC). . Tech. rep. 2013. url:
https://gcc.gnu.org/onlinedocs/gcc-4.8.4/gcc/ (visited on 05/18/2015).

4Emese Revfy. Introduce GCC plugin infrastructure. Published: Patch
submitted to the kernel mailing-list. 2016.
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Results — Explanations

X : Everything is allright, complete mediation is ensured

∼ : We have identi�ed some problems: some paths which
should be impossible and are not

× : We wanted to analyze the paths but there are actually
no LSM hooks in the system call
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Results — read, write, and their kin

Syscall Result Details

read . . . . . . . X All paths in P are impossible
readv . . . . . X All paths in P are impossible
preadv . . . . X All paths in P are impossible
pread64 . . . X All paths in P are impossible
write . . . . . X All paths in P are impossible
writev . . . . X All paths in P are impossible
pwritev . . . X All paths in P are impossible
pwrite64 . . X All paths in P are impossible
sendfile . . X All paths in P are impossible
sendfile64 X All paths in P are impossible
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Results — splice-like system calls

Syscall Result Details

splice . . ∼ No hook for the pipe-to-pipe �ow
. . All other paths are impossible

tee . . . . . × No LSM hook
vmsplice ∼ One path is possible
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Results — network-specific system calls

Syscall Result Details

recv . . . . X Set P is empty
recvmsg . X Set P is empty
recvmmsg ∼ One path is possible
recvfrom X Set P is empty
send . . . . X Set P is empty
sendmsg . X Set P is empty
sendmmsg ∼ One path is possible
sendto . . X Set P is empty
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Results — processes’ life

Syscall Result Details

fork . . . . X Set P is empty
vfork . . . X Set P is empty
clone . . . X Set P is empty
execve . . X Set P is empty
execveat X Set P is empty
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Results — System V and POSIX message qeues

Syscall Result Details

msgrcv . . . . . . . . . . X All paths in P are impossible
msgsnd . . . . . . . . . . X Set P is empty
mq_timedreceive × No LSM hook
mq_timedsend . . . × No LSM hook
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Results — Memory-to-memory flows

Syscall Result Details

process_vm_readv . X Some paths possible but not con-
sidered an actual �ow

process_vm_writev X Some paths possible but not con-
sidered an actual �ow

migrate_pages . . . . X Set P is empty
move_pages . . . . . . . . X Set P is empty
shmat . . . . . . . . . . . . . . X Set P is empty
mmap_pgoff . . . . . . . . X Set P is empty
mmap . . . . . . . . . . . . . . . X Set P is empty
ptrace . . . . . . . . . . . . X Some paths possible but not con-

sidered an actual �ow
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Outcome

Interesting results:
I confort the idea that it is possible to do information �ow

tracking with LSM
I highlight some holes in the design and implementation of LSM

with respect to information �ow tracking
I give a veri�able and reproducible way to analyze and improve

the LSM framework
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Static analysis assisted by the compiler

The GCC plugin interface has been opened to implement
optimizations passes.
But! It is also a new way of performing static analysis!
Already used in the Linux kernel5

Bene�ts
I GCC data structures available: CFGs, points-to oracle, etc.
I Analysis can be done on simpler intermediate representations
I Ability to deal with GCCisms
I The code that is analyzed is not the code that is written but the

code that will get executed (or at least, a closer form thereof)

5Emese Revfy. Introduce GCC plugin infrastructure. Published: Patch
submitted to the kernel mailing-list. 2016.
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On-going work

Cover more overt and covert channels of information �ows in a
correct, veri�able way.

In particular, deal with mmap-ed �les and shared memories.

Deal with concurrency between �ows.
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Thank you for your attention.

Questions?
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Variables

Variables are separated in 2x2 categories:
I Varsmem vs. Varstemp

I Varsmem: Aliasable variables
I Varstemp: Variables whose address is never taken

I Varsptr vs. VarsZ
I Varsptr : Pointers
I VarsZ: Numeric variables

The typing is enforced by the compiler.

Many variables are synthetized by the compiler itself to maintain the
SSA property.
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Node types

Simple assignments

<ssa 183>.87 = <ssa 182>.86

E�ects: Case x = y Add a constraint x = y

Case p = &y Add a mapping p↔ y
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Node types

Assignments through pointers

*a.1 = y

E�ects:
I If there is a mapping a.1↔ x, add a constraint x = y

I Otherwise, remove all constraints about variables a.1 may point
to (GCC has a points-to oracle)
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Node types

Phi nodes
<ssa 184>.88 = PHI«ssa 183>.87, retval.83>

Found after nodes where several edges meet.

E�ects:

x = PHI < e1, e2, . . . , en >
Add a constraint x = ei where ei

correspond to the branch taken in
this path
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Node types

Function calls

retval.85 = security_file_permission(file.7, 4)

E�ects:
I Remove constraints on the return value
I Remove constraints on variables in Varsmem

Portions of assembly code are also represented with this node
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Edges

. . . . . .
[!retval.83 < 0]

E�ects:
I Add the constraint corresponding to the guard
I The operator is one of {=, 6=, <,>,≥,≤}

Guards on edges with the same source node are complementary
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