
Introduction Static Analysis Implementation and Results Conclusion Questions References

Verifying the Reliability of Operating
System-Level Information Flow Control in Linux

Laurent Georget*
Mathieu Jaume† Guillaume Piolle‡
Frédéric Tronel‡ Valérie Viet Triem Tong‡

*Université de Rennes 1 / ‡CentraleSupélec / Inria, Rennes, France
†LIP6, Sorbonne Universités, Paris, France

FormaliSE — 2017-05-27 1 Laurent Georget

Introduction Static Analysis Implementation and Results Conclusion Questions References

An Information Flow Perspective
I Linux Operating Systems
Containers of information: objects in the system able to store
information originating from users, the OS environment, etc.:

I �les
I pipes
I network sockets
I message queues
I processes’ memory space
I more?

Data �ow from one container to another
I when reading a �le
I when storing a message in a message queue
I etc.

FormaliSE — 2017-05-27 2 Laurent Georget

Introduction Static Analysis Implementation and Results Conclusion Questions References

The information must flow

Userspace

Syscall interface

Kernelspace

Hardware

Process

Kernel thread

I User processes are
isolated

I Have no privileges
I Must use System

Calls to perform
privileged operations

I Syscalls cause information �ows

FormaliSE — 2017-05-27 3 Laurent Georget

Introduction Static Analysis Implementation and Results Conclusion Questions References

The information must flow

Userspace

Syscall interface

Kernelspace

Hardware

Process

Kernel thread

I User processes are
isolated

I Have no privileges
I Must use System

Calls to perform
privileged operations

I Syscalls cause information �ows

FormaliSE — 2017-05-27 3 Laurent Georget

Introduction Static Analysis Implementation and Results Conclusion Questions References

Information Flow Trackers for Linux

I Laminar Porter et al., “Practical Fine-Grained Information
Flow Control Using Laminar”

I KBlare Zimmermann, Mé, and Bidan, “An Improved Reference
Flow Control Model for Policy-Based Intrusion Detection”

I Weir Nadkarni et al., “Practical DIFC enforcement on Android”

FormaliSE — 2017-05-27 4 Laurent Georget

Introduction Static Analysis Implementation and Results Conclusion Questions References

Tracking flows with taint propagation

I Each container has a label identifying its initial content
I Each time a �ow occurs, the destination label is updated with

the source label

I Example: head file | wc

�le

/bin/head

sh

/bin/wc

FormaliSE — 2017-05-27 5 Laurent Georget

Introduction Static Analysis Implementation and Results Conclusion Questions References

Tracking flows with taint propagation

I Each container has a label identifying its initial content
I Each time a �ow occurs, the destination label is updated with

the source label

I Example: head file | wc

�le

/bin/head

sh

|

/bin/wc

sh
fork

pipe

FormaliSE — 2017-05-27 5 Laurent Georget

Introduction Static Analysis Implementation and Results Conclusion Questions References

Tracking flows with taint propagation

I Each container has a label identifying its initial content
I Each time a �ow occurs, the destination label is updated with

the source label

I Example: head file | wc

�le

/bin/head

head

|

/bin/wc

wc

execve execve

FormaliSE — 2017-05-27 5 Laurent Georget

Introduction Static Analysis Implementation and Results Conclusion Questions References

Tracking flows with taint propagation

I Each container has a label identifying its initial content
I Each time a �ow occurs, the destination label is updated with

the source label

I Example: head file | wc

�le

/bin/head

head

|

/bin/wc

wc

read

FormaliSE — 2017-05-27 5 Laurent Georget

Introduction Static Analysis Implementation and Results Conclusion Questions References

Tracking flows with taint propagation

I Each container has a label identifying its initial content
I Each time a �ow occurs, the destination label is updated with

the source label

I Example: head file | wc

�le

/bin/head

head

|

/bin/wc

wc
write

FormaliSE — 2017-05-27 5 Laurent Georget

Introduction Static Analysis Implementation and Results Conclusion Questions References

Tracking flows with taint propagation

I Each container has a label identifying its initial content
I Each time a �ow occurs, the destination label is updated with

the source label

I Example: head file | wc

�le

/bin/head

head

|

/bin/wc

wc

read

FormaliSE — 2017-05-27 5 Laurent Georget

Introduction Static Analysis Implementation and Results Conclusion Questions References

Tracking flows with taint propagation

I Each container has a label identifying its initial content
I Each time a �ow occurs, the destination label is updated with

the source label

I Example: head file | wc

�le

/bin/head

head

|

/bin/wc

wc . . .

FormaliSE — 2017-05-27 5 Laurent Georget

Example 1: read

fs/read_write.c

Introduction Static Analysis Implementation and Results Conclusion Questions References

Graphs and execution paths

I One system call = One graph
I One possible execution path = One path from INIT to END
I One instruction = One node
I One sequence or jump = One edge

Extracted directly from the GCC compiler

Not exactly C but GIMPLE: intermediate representation

In Static Single Assignment form1

1Cytron et al., “E�ciently Computing Static Single Assignment Form and the
Control Dependence Graph”.

FormaliSE — 2017-05-27 7 Laurent Georget

INIT

<ssa 799>.5 = capable(26)

[<ssa 799>.5 != 0]

[!<ssa 799>.5 != 0]

tty_vhangup_self()

<ssa 800>.1 = PHI <0, -1>

<ssa 800>.1

END

/*
* This routine simulates a hangup
* on the tty, to arrange that
* users are given clean terminals
* at login time.
*/

SYSCALL_DEFINE0(vhangup)
{

if (capable(CAP_SYS_TTY_CONFIG)) {
tty_vhangup_self();
return 0;

}
return -EPERM;

}

Introduction Static Analysis Implementation and Results Conclusion Questions References

Anatomy of a syscall

Syscall = Entry-point of a user process in the kernel

1. Basic checks
2. Advanced checks / lock taking
3. Linux Security Modules hooks
4. Actual operation
5. Lock release
6. Return

Many shortcuts exist, in case of errors.

FormaliSE — 2017-05-27 9 Laurent Georget

Introduction Static Analysis Implementation and Results Conclusion Questions References

Anatomy of a syscall

Syscall = Entry-point of a user process in the kernel

1. Basic checks
2. Advanced checks / lock taking
3. Linux Security Modules hooks
4. Actual operation
5. Lock release
6. Return

Many shortcuts exist, in case of errors.

FormaliSE — 2017-05-27 9 Laurent Georget

Introduction Static Analysis Implementation and Results Conclusion Questions References

Anatomy of a syscall

Syscall = Entry-point of a user process in the kernel

1. Basic checks
2. Advanced checks / lock taking
3. Linux Security Modules hooks
4. Actual operation
5. Lock release
6. Return

Many shortcuts exist, in case of errors.

FormaliSE — 2017-05-27 9 Laurent Georget

Introduction Static Analysis Implementation and Results Conclusion Questions References

The Linux Security Modules Framework

LSM provides security kernel developpers with:
I Additional general-purpose security �elds in kernel data

structures (inodes, tasks, etc.)
I Hooks strategically placed in the syscalls code to register

callbacks

I Expected use: LSMs store their state in the �elds and use the
hooks to

I manage the state
I authorize security-sensitive operations

FormaliSE — 2017-05-27 10 Laurent Georget

Introduction Static Analysis Implementation and Results Conclusion Questions References

The Linux Security Modules Framework

LSM provides security kernel developpers with:
I Additional general-purpose security �elds in kernel data

structures (inodes, tasks, etc.)
I Hooks strategically placed in the syscalls code to register

callbacks
I Expected use: LSMs store their state in the �elds and use the
hooks to

I manage the state
I authorize security-sensitive operations

FormaliSE — 2017-05-27 10 Laurent Georget

Introduction Static Analysis Implementation and Results Conclusion Questions References

Our problem

Information �ow trackers can only observe the execution of syscalls
when called through a LSM hook.

If a syscall can generate an information �ow without going through
a LSM hook, that �ow will be missed.

Important property to ensure a correct �ow tracking
There must be a LSM hook in each execution path leading to the
production of a �ow in system calls.

FormaliSE — 2017-05-27 11 Laurent Georget

Introduction Static Analysis Implementation and Results Conclusion Questions References

Our problem

Information �ow trackers can only observe the execution of syscalls
when called through a LSM hook.

If a syscall can generate an information �ow without going through
a LSM hook, that �ow will be missed.

Important property to ensure a correct �ow tracking
There must be a LSM hook in each execution path leading to the
production of a �ow in system calls.

FormaliSE — 2017-05-27 11 Laurent Georget

Introduction Static Analysis Implementation and Results Conclusion Questions References

Previous works

I Zhang, Edwards, and Jaeger, “Using CQUAL for Static Analysis
of Authorization Hook Placement”

I Jaeger, Edwards, and Zhang, “Consistency analysis of
authorization hook placement in the Linux security modules
framework”

I Ganapathy, Jaeger, and Jha, “Automatic Placement of
Authorization Hooks in the Linux Security Modules
Framework”

I Muthukumaran, Jaeger, and Ganapathy, “Leveraging "choice" to
automate authorization hook placement”

FormaliSE — 2017-05-27 12 Laurent Georget

Introduction Static Analysis Implementation and Results Conclusion Questions References

Finding problematic paths

Paths

FormaliSE — 2017-05-27 13 Laurent Georget

Introduction Static Analysis Implementation and Results Conclusion Questions References

Finding problematic paths

Paths

Paths�ows

FormaliSE — 2017-05-27 13 Laurent Georget

Introduction Static Analysis Implementation and Results Conclusion Questions References

Finding problematic paths

Paths

Paths�ows PathsLSM

FormaliSE — 2017-05-27 13 Laurent Georget

Introduction Static Analysis Implementation and Results Conclusion Questions References

Finding problematic paths

PathsPaths

P

Paths�ows PathsLSM

FormaliSE — 2017-05-27 13 Laurent Georget

Introduction Static Analysis Implementation and Results Conclusion Questions References

Finding problematic paths

PathsPaths

P

Paths�ows PathsLSM

P is the set of apparently valid paths generating �ows not covered
by a LSM hooks =⇒ paths to analyze

FormaliSE — 2017-05-27 13 Laurent Georget

Introduction Static Analysis Implementation and Results Conclusion Questions References

Instructions causing flows and LSM hooks

LSM hooks can be automatically found in the code of system calls

Instructions causing �ows less so. . .

Several heuristics:
I Use of locking
I End of checks
I Calls to architecture/hardware-dependent functions
I Dynamic calls through function pointers

FormaliSE — 2017-05-27 14 Laurent Georget

Introduction Static Analysis Implementation and Results Conclusion Questions References

Instructions causing flows and LSM hooks

LSM hooks can be automatically found in the code of system calls

Instructions causing �ows less so. . .

Several heuristics:
I Use of locking
I End of checks
I Calls to architecture/hardware-dependent functions
I Dynamic calls through function pointers

FormaliSE — 2017-05-27 14 Laurent Georget

Several standard problems

Some paths are actually
impossible: we should exclude
them

Loops mean there are an in�nity
of paths of �nite length: we
cannot analyze them all

Dealing with impossible paths and loops
PathsPaths

Paths�ows

P

PathsLSM

Property (Complete mediation)
The complete mediation holds if, and only if: P ⊆ I, i.e. all the
execution paths that perform an information �ow and are not

controlled by the information �ow monitor since they do not contain a

LSM hook are impossible according to the static analysis.

Dealing with impossible paths and loops
PathsPaths

Paths�ows

P

PathsLSM

I

Property (Complete mediation)
The complete mediation holds if, and only if: P ⊆ I, i.e. all the
execution paths that perform an information �ow and are not

controlled by the information �ow monitor since they do not contain a

LSM hook are impossible according to the static analysis.

Dealing with impossible paths and loops
PathsPaths

Paths�ows

P

PathsLSM

Paths

I

Paths

Property (Complete mediation)
The complete mediation holds if, and only if: P ⊆ I, i.e. all the
execution paths that perform an information �ow and are not

controlled by the information �ow monitor since they do not contain a

LSM hook are impossible according to the static analysis.

Dealing with impossible paths and loops
Paths

Acyclic
paths
in P

Paths

Paths�ows

P
PathsLSM

Paths

I

Paths

I Since P may be in�nite, we need a way to make the analysis of the
subset of acyclic paths in P su�cient to conclude on all paths in P.

Introduction Static Analysis Implementation and Results Conclusion Questions References

Analysis outline
General idea:

I Analyze each system call independently
I In each system call,

1. identify nodes producing �ows
2. trace the paths back up until reaching either the beginning of

the function or a LSM hook
3. discard the paths reaching a LSM hook (paths in PathsLSM)
4. when reaching a loop, jump to the outer-most loop header to

select only acyclic paths
I For each analyzed path,

I go through each node and edge in order
I gather constraints on variables from nodes and guards on edges

in a con�guration
I when reaching a con�guration with inconsistent constraints,

declare the path as impossible
OR when reaching the end of the path, declare it as possible

FormaliSE — 2017-05-27 17 Laurent Georget

Satisfiability

a.1 = PHI <0, a.8>

f(a.1)

<ssa 1>.6 = f(a.1)

[<ssa 1>.6 != a.1] [!<ssa 1>.6 != a.1]

a.11 = PHI <a.1>

[a.11 > 10]

[!a.11 > 10]

__printf_chk(1, &"fixpoint after 10\n")

...

Satis�ability
Current node: a.1 = PHI<0,a.8>

Set of constraints:
{a.1 = 0}

Satis�able: Yes

Satisfiability

<ssa 1>.6 = f(a.1)

a.1 = PHI <0, a.8>

f(a.1)

[<ssa 1>.6 != a.1] [!<ssa 1>.6 != a.1]

a.11 = PHI <a.1>

[a.11 > 10]

[!a.11 > 10]

__printf_chk(1, &"fixpoint after 10\n")

...

Satis�ability
Current node: <ssa 1>.6 = f(a.1)

Set of constraints:
{a.1 = 0}

Satis�able: Yes

Satisfiability

a.11 = PHI <a.1>

a.1 = PHI <0, a.8>

<ssa 1>.6 = f(a.1)

f(a.1)

[<ssa 1>.6 != a.1] [!<ssa 1>.6 != a.1]

[a.11 > 10]

[!a.11 > 10]

__printf_chk(1, &"fixpoint after 10\n")

...

Satis�ability
Current edge: [!<ssa 1>.6 != a.1]

Set of constraints:{
a.1 = 0,

<ssa 1>.6 6= a.1

}
Satis�able: Yes

Satisfiability

a.11 = PHI <a.1>

a.1 = PHI <0, a.8>

<ssa 1>.6 = f(a.1)

f(a.1)

[<ssa 1>.6 != a.1] [!<ssa 1>.6 != a.1]

[a.11 > 10]

[!a.11 > 10]

__printf_chk(1, &"fixpoint after 10\n")

...

Satis�ability
Current node: a.11 = PHI<a.1>

Set of constraints:
a.1 = 0,

<ssa 1>.6 6= a.1,
a.11 = a.1


Satis�able: Yes

Satisfiability

a.11 = PHI <a.1>

a.1 = PHI <0, a.8>

<ssa 1>.6 = f(a.1)

f(a.1)

[<ssa 1>.6 != a.1] [!<ssa 1>.6 != a.1]

[a.11 > 10]

[!a.11 > 10]

__printf_chk(1, &"fixpoint after 10\n")

...

Satis�ability
Current edge: [a.11 > 10]

Set of constraints:
a.1 = 0,

<ssa 1>.6 6= a.1,
a.11 = a.1,
a.11 > 10


Satis�able: No =⇒ path impossible

Satisfiability

f(a.1)

a.1 = PHI <0, a.8>

<ssa 1>.6 = f(a.1)

[<ssa 1>.6 != a.1] [!<ssa 1>.6 != a.1]

a.11 = PHI <a.1>

[a.11 > 10]

[!a.11 > 10]

__printf_chk(1, &"fixpoint after 10\n")

...

Satis�ability

Set of constraints:
a.1 = 0,

<ssa 1>.6 6= a.1,
a.11 = a.1,
a.11 > 10


Satis�able: No =⇒ path impossible

The satis�ability is veri�ed by
SMT-solver Yices 2.

2Bruno Dutertre and Leonardo de Moura. The Yices SMT solver. Tech. rep.
SRI International, 2006.

Handling loops

f(a.1)

a.8 = a.1 + 1

a.1 = PHI <0, a.8>

<ssa 1>.6 = f(a.1)

[<ssa 1>.6 != a.1] [!<ssa 1>.6 != a.1]

a.11 = PHI <a.1>

[a.11 > 10]

[!a.11 > 10]

__printf_chk(1, &"fixpoint after 10\n")

Loop

Loop header

Exit node

Entry node

Backward edge

For this example, this is

the interesting node from

which we construct a path

towards the beginning of

the function.

Dealing with loops

Loops have a special syntax and
are detected by GCC
We de�ne a equivalence
relation on paths : two paths are
equivalent if they are identical up
to their cycles.
We analyze only acyclic paths
(normal form)

When there is a loop, we remove
constraints about all variables
modi�ed inside the loop. =⇒
The number of iterations of loops
does not change the resulting
con�guration.

Introduction Static Analysis Implementation and Results Conclusion Questions References

Implementation

The analysis is implemented as Kayrebt::PathExaminer2, a GCC
4.8 plugin3,4.

No extraction of CFGs needed: the analysis works on GCC’s CFG.

Deep insertion inside the compilation process: after the optimized
phase.

Needs a previous annotation of nodes causing information �ows and
inlinable functions (can be done with Kayrebt::Callgraphs)

3Richard Matthew Stallman and the GCC developer community. Using the
GNU Compiler Collection (GCC). . Tech. rep. 2013. url:
https://gcc.gnu.org/onlinedocs/gcc-4.8.4/gcc/ (visited on 05/18/2015).

4Emese Revfy. Introduce GCC plugin infrastructure. Published: Patch
submitted to the kernel mailing-list. 2016.

FormaliSE — 2017-05-27 20 Laurent Georget

https://gcc.gnu.org/onlinedocs/gcc-4.8.4/gcc/

Introduction Static Analysis Implementation and Results Conclusion Questions References

Results — Explanations

X : Everything is allright, complete mediation is ensured

∼ : We have identi�ed some problems: some paths which
should be impossible and are not

× : We wanted to analyze the paths but there are actually
no LSM hooks in the system call

FormaliSE — 2017-05-27 21 Laurent Georget

Introduction Static Analysis Implementation and Results Conclusion Questions References

Results — read, write, and their kin

Syscall Result Details

read X All paths in P are impossible
readv X All paths in P are impossible
preadv X All paths in P are impossible
pread64 . . . X All paths in P are impossible
write X All paths in P are impossible
writev X All paths in P are impossible
pwritev . . . X All paths in P are impossible
pwrite64 . . X All paths in P are impossible
sendfile . . X All paths in P are impossible
sendfile64 X All paths in P are impossible

FormaliSE — 2017-05-27 22 Laurent Georget

Introduction Static Analysis Implementation and Results Conclusion Questions References

Results — splice-like system calls

Syscall Result Details

splice . . ∼ No hook for the pipe-to-pipe �ow
. . All other paths are impossible

tee × No LSM hook
vmsplice ∼ One path is possible

FormaliSE — 2017-05-27 23 Laurent Georget

Introduction Static Analysis Implementation and Results Conclusion Questions References

Results — network-specific system calls

Syscall Result Details

recv X Set P is empty
recvmsg . X Set P is empty
recvmmsg ∼ One path is possible
recvfrom X Set P is empty
send X Set P is empty
sendmsg . X Set P is empty
sendmmsg ∼ One path is possible
sendto . . X Set P is empty

FormaliSE — 2017-05-27 24 Laurent Georget

Introduction Static Analysis Implementation and Results Conclusion Questions References

Results — processes’ life

Syscall Result Details

fork X Set P is empty
vfork . . . X Set P is empty
clone . . . X Set P is empty
execve . . X Set P is empty
execveat X Set P is empty

FormaliSE — 2017-05-27 25 Laurent Georget

Introduction Static Analysis Implementation and Results Conclusion Questions References

Results — System V and POSIX message qeues

Syscall Result Details

msgrcv X All paths in P are impossible
msgsnd X Set P is empty
mq_timedreceive × No LSM hook
mq_timedsend . . . × No LSM hook

FormaliSE — 2017-05-27 26 Laurent Georget

Introduction Static Analysis Implementation and Results Conclusion Questions References

Results — Memory-to-memory flows

Syscall Result Details

process_vm_readv . X Some paths possible but not con-
sidered an actual �ow

process_vm_writev X Some paths possible but not con-
sidered an actual �ow

migrate_pages X Set P is empty
move_pages X Set P is empty
shmat X Set P is empty
mmap_pgoff X Set P is empty
mmap X Set P is empty
ptrace X Some paths possible but not con-

sidered an actual �ow

FormaliSE — 2017-05-27 27 Laurent Georget

Introduction Static Analysis Implementation and Results Conclusion Questions References

Outcome

Interesting results:
I confort the idea that it is possible to do information �ow

tracking with LSM
I highlight some holes in the design and implementation of LSM

with respect to information �ow tracking
I give a veri�able and reproducible way to analyze and improve

the LSM framework

FormaliSE — 2017-05-27 28 Laurent Georget

Introduction Static Analysis Implementation and Results Conclusion Questions References

Static analysis assisted by the compiler

The GCC plugin interface has been opened to implement
optimizations passes.
But! It is also a new way of performing static analysis!
Already used in the Linux kernel5

Bene�ts
I GCC data structures available: CFGs, points-to oracle, etc.
I Analysis can be done on simpler intermediate representations
I Ability to deal with GCCisms
I The code that is analyzed is not the code that is written but the

code that will get executed (or at least, a closer form thereof)

5Emese Revfy. Introduce GCC plugin infrastructure. Published: Patch
submitted to the kernel mailing-list. 2016.

FormaliSE — 2017-05-27 29 Laurent Georget

Introduction Static Analysis Implementation and Results Conclusion Questions References

Static analysis assisted by the compiler

The GCC plugin interface has been opened to implement
optimizations passes.
But! It is also a new way of performing static analysis!
Already used in the Linux kernel5

Bene�ts
I GCC data structures available: CFGs, points-to oracle, etc.
I Analysis can be done on simpler intermediate representations
I Ability to deal with GCCisms
I The code that is analyzed is not the code that is written but the

code that will get executed (or at least, a closer form thereof)

5Emese Revfy. Introduce GCC plugin infrastructure. Published: Patch
submitted to the kernel mailing-list. 2016.

FormaliSE — 2017-05-27 29 Laurent Georget

Introduction Static Analysis Implementation and Results Conclusion Questions References

On-going work

Cover more overt and covert channels of information �ows in a
correct, veri�able way.

In particular, deal with mmap-ed �les and shared memories.

Deal with concurrency between �ows.

FormaliSE — 2017-05-27 30 Laurent Georget

Thank you for your attention.

Questions?

Introduction Static Analysis Implementation and Results Conclusion Questions References

Ron Cytron et al. “E�ciently Computing Static Single
Assignment Form and the Control Dependence Graph”. In:
ACM Transactions on Programming Languages and
Systems 13.4 (Oct. 1991), pp. 451–490. url:
http://doi.acm.org/10.1145/115372.115320.
Bruno Dutertre and Leonardo de Moura. The Yices SMT
solver. Tech. rep. SRI International, 2006.
Vinod Ganapathy, Trent Jaeger, and Somesh Jha. “Automatic
Placement of Authorization Hooks in the Linux Security
Modules Framework”. In: ACM Conference on Computer
and Communications Security. ACM, 2005.
Trent Jaeger, Antony Edwards, and Xiaolan Zhang.
“Consistency analysis of authorization hook placement in the
Linux security modules framework”. In: ACM Trans. Inf.
Syst. Secur. 7.2 (2004).

FormaliSE — 2017-05-27 32 Laurent Georget

http://doi.acm.org/10.1145/115372.115320

Introduction Static Analysis Implementation and Results Conclusion Questions References

Divya Muthukumaran, Trent Jaeger, and Vinod Ganapathy.
“Leveraging "choice" to automate authorization hook
placement”. In: ACM Conference on Computer and
Communications Security. ACM, 2012.
Adwait Nadkarni et al. “Practical DIFC enforcement on
Android”. In: USENIX Security Symposium. 2016.
Donald E. Porter et al. “Practical Fine-Grained Information
Flow Control Using Laminar”. In: ACM Transactions on
Programming Languages and Systems 37.1 (Nov. 2014).
Emese Revfy. Introduce GCC plugin infrastructure.
Published: Patch submitted to the kernel mailing-list. 2016.
Richard Matthew Stallman and
the GCC developer community. Using the GNU Compiler
Collection (GCC). Tech. rep. 2013. url:
https://gcc.gnu.org/onlinedocs/gcc-4.8.4/gcc/
(visited on 05/18/2015).

FormaliSE — 2017-05-27 33 Laurent Georget

https://gcc.gnu.org/onlinedocs/gcc-4.8.4/gcc/

Introduction Static Analysis Implementation and Results Conclusion Questions References

Xiaolan Zhang, Antony Edwards, and Trent Jaeger. “Using
CQUAL for Static Analysis of Authorization Hook
Placement”. In: USENIX Security Symposium. USENIX
Association, 2002.

Jacob Zimmermann, Ludovic Mé, and Christophe Bidan. “An
Improved Reference Flow Control Model for Policy-Based
Intrusion Detection”. In: Computer Security – ESORICS
2003. Lecture Notes in Computer Science 2808. Springer
Berlin Heidelberg, Oct. 13, 2003, pp. 291–308.

FormaliSE — 2017-05-27 34 Laurent Georget

Variables

Variables are separated in 2x2 categories:
I Varsmem vs. Varstemp

I Varsmem: Aliasable variables
I Varstemp: Variables whose address is never taken

I Varsptr vs. VarsZ
I Varsptr : Pointers
I VarsZ: Numeric variables

The typing is enforced by the compiler.

Many variables are synthetized by the compiler itself to maintain the
SSA property.

FormaliSE — 2017-05-27 35 Laurent Georget

Node types

Simple assignments

<ssa 183>.87 = <ssa 182>.86

E�ects: Case x = y Add a constraint x = y

Case p = &y Add a mapping p↔ y

FormaliSE — 2017-05-27 36 Laurent Georget

Node types

Assignments through pointers

*a.1 = y

E�ects:
I If there is a mapping a.1↔ x, add a constraint x = y

I Otherwise, remove all constraints about variables a.1 may point
to (GCC has a points-to oracle)

FormaliSE — 2017-05-27 36 Laurent Georget

Node types

Phi nodes
<ssa 184>.88 = PHI«ssa 183>.87, retval.83>

Found after nodes where several edges meet.

E�ects:

x = PHI < e1, e2, . . . , en >
Add a constraint x = ei where ei

correspond to the branch taken in
this path

FormaliSE — 2017-05-27 36 Laurent Georget

Node types

Function calls

retval.85 = security_file_permission(file.7, 4)

E�ects:
I Remove constraints on the return value
I Remove constraints on variables in Varsmem

Portions of assembly code are also represented with this node

FormaliSE — 2017-05-27 36 Laurent Georget

Edges

.
[!retval.83 < 0]

E�ects:
I Add the constraint corresponding to the guard
I The operator is one of {=, 6=, <,>,≥,≤}

Guards on edges with the same source node are complementary

FormaliSE — 2017-05-27 37 Laurent Georget

	Introduction
	Static Analysis
	Implementation and Results
	Conclusion

