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* CPS are mechatronic systems, characterized by tight integration between computational,

communication, and physical components

* Design of CPS involve heterogeneous domains, involve multiple abstractions, and multiple

models with varying fidelities
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~ CPS Design Toolchains : OpenMETA
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CPS Design toolchains are complex, involve many different models, modeling languages,
model transformations, and semantic domains
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Formalization of CPS Toolchains

Provable Correctness of CPS depends on many factors:
* Correctness of Modeling Language(s)

e Correctness of Model Transformation Tools

e Correctness of Models

Correctness of (auto-generated) Software

e Correctness of Runtime
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Embedded Systems Modeling (ESMolL) Toolchain
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ESMol is a toolchain for design, simulation, analysis and

synthesis of controllers
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ESMoL Use case:

SOFTWARE
IMPLEMENTATION

SOFTWARE

GENERATION

ANALYSIS

& EXECUTION

Proc RS 4MHz 0s 0s
Comp InnerLoop =50Hz 1ms
Comp DataHandling =50Hz 1ms SChed u Ie Spec
Comp ADC =50Hz 1us a 00 Yo
Comp Serialln =50Hz 1ms -
Comp SerialOut =50Hz 1ms ~ ° Yifebeende) =
b Msg DataHandling.sensor_data 8B RS/ADC RS/DataHandling — TR
o E Msg DataHandling.pos_ref 8B RS/Serialln RS/DataHandling
PosDatapsgExec  AltReMMsgExec ‘ Msg InnerLoop.thrust_commands 8B RS/InnerLoop RS/SerialOut }’EE@
DOSReﬂnMngxecRelerenceHandler Msg LocalOrder 1B RS/DataHandling RS/InnerLoop z = g T o Analogout
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RS_Sched

RS

Component Timing Proc G5 100MHz 05 05 } Bl pe

Comp OuterLoop =50Hz 1ms - . g
12 shese
Parameters: Bus T 12€ 100kb 1ms : ggerec —L
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Msg OuterLoop.ang_ref 8B GS/OuterLoop RS/InnerLoop ﬂél

O TTSCh ed u Ie = Sta rt ti mes | _Msg DataHandling.pos_msg 8B RS/DataHandling GS/OuterLoop )] E Respanse
in the start of a hyperperiod ...
. Ayperperiod 20 ms . =nul
* ExecPeriod  EGEE

se
// Determine start of current hyperperiod
kernelData->hyperperiodStart = ttCurrentTime();

GS/OuterLoop_0 9.495

}
// Otherwise we should schedule a task

® WC DU ratlon Attributes ’ Preferences I PlODelllesl *1,7 Ve are woken up, now schedule the task
TTSchedule 0.015 2:;1:?':]";2;:5 Sc aato 2 1:t:;;;:rrentTask—)se:nnd.c_str() )i
. _08. askit;
ExecPeriod 20ms

Generated Task == EE—__——

RS/InnerLoop_0 9.495

. k list
WCDuration 1.5ms RS/DataHandling_0 10.495 . ent?:skpzlaéi;ewata—>tasks.begin( );
Fefseralou 0 1863 Execution Code Sz

t of here

TT_l2C/OuterLoop.ang_ref_09.175 N

TT_I2C/DataHandling.pos_msg_0 10.815 7/ Determine time of the next task to be executed
- - o— double taskTime = kernelData->currentTask->first +
kernelData->hyperperiodStart;

ESMol | _:> Scheduler Spec (.scs) i
Model Generator !

File

Scheduler TrueTime Simulink Model (mdl)
Task Execution Code (C)

2
Importer ::]Schedulé,r Result (.rslt)
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Functions (Meta)Models Languages Tools Roles
e GME : DSMLsp';t:llk:aﬂo::g
Metamodeling =) MetaGME | MetaGME2 | = Metaprogrammable
g I - Formula « Bridge to other MBDT
il S TP ———— eeason ¢ Transf. spedﬂcaﬂon
. [ EsesEa e B * GReAT * Complling o
Transformation |-, = UMTL e UDM transformations
. ) * G matching -
Modeling | S - (Python, C++) | , goN2 baee operations
[T [ donsin OFA { - * Formal spedﬂm
Formal | e I e * Model | . Motamodel checking
. 2 [qo?e. 3-17%'9--5--???: . Visualizer * DSML oomPosmon
Metamodellng 2 fgi:i:\:it?]‘ansnmn ©i= (src: State, * Evolving structures
7 pr,ivmi‘fc:i”\\{,éwturrent 1i= (st: State). e Trace Gen" ¢ Moadgeneraﬂon
1 | transform Step<fire: inl.Event> from DFA FormUIa * Model validation
outl.State(x) ;- inl.State(x). o o Semantics for
FOl'ma| § outl.Event(x) :- inl.Event(x). (MSR) ° Semantllc complex DSMLs
o outl.Transition(s, e, sp) :- inl.Trans o °
TranSformatIOn : outl.Current(sp) :- inl?gurr'ent(s) , 11 AnChOlﬂlng m of
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Formalization of Structural Semantics

L_< Y’C([]')ie]>

( ={rERY|r|=C}

Key Concept: DSML syntax is understood as a constraint

system that identifies behaviorally meaningful models.
Structural semantics provides mathematical formalism
for interpreting models as well-formed structures.

Y: set of concepts,

R, : set of possible
model realizations

C: set of constraints
over R,

D(Y,C): domain of well-

formed models

[ ]: interpretations

Jackson & Sz. 2007
Jackson, Schulte, Sz.
‘2008

Jackson & Sz. ‘2009

Structural Semantics defines modeling domains using
Algebraic Data Types and First-Order Logic with Fixpoints.
Semantics is specified by Constraint Logic Programming.

Use of structural semantics:

« Conformance testing: xeD

« Non-emptiness checking: D(Y,C) # {nil}

* DSML composing: D; * D,|D; + D,|D" includes D
* Model finding: S={s€D|s| =P}

* Transforming: m'=T(m)ym' eX;meY

Microsoft Research Tool: FORMULA
» Fragment of LP is equivalent to full first-order logic
* Provide semantic domain for model transformations.
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| ( | ( Explicit Methods for Specifying k-
Behavioral Semantics 1/2
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Representation as AST
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Heterogeneous math domain; Reasonable tool support;
Operational semantics Easy to understand
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6] Explicit Methods for Specifying \ Y/
Behavioral Semantics 2/2
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| R, >R,
D(Y',C)={rER, |r|=C'}
]R — R,

Single math framework
Unified approach




1§19

VANDERBILT
SCHOOL OF ENGINEERING
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* Formalization of ESMolL
— Structural Semantics
— Behavioral Semantics
— Model Verification
— Code Verification
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. oAt e ESMo|

Structural semantics of Stateflow sub-
language of ESMolL

Behavioral semantics of Stateflow sub-
language of ESMolL

Formal verification of Stateflow models using
NuSMV

Formal verification of code-generated from
ESMolL-Stateflow
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State ::= new

Terms

(name:String,
decomposition: {OR,AND},
entryAction:String,
duringAction:String,
exitAction:String,
order:Integer).

StateContainment ::= fun (State =>

Transition

State + Subsystem).

= new (name:String,
src:Transition Source,
dst:Transition Destination,
guard: String,
condition_action:String,
transition action:String,
order:Integer).

V VANDERBILT
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ESMolL - Structural Semantics

Structural validity Rules

valid transition(T) :- T is Transition,
StateContainment (T.src, P),
StateContainment (T.dst,P) .

valid transition(T) :- T is Transition,
StateContainment (T.src,Pl),
StateContainment (T.dst, P2),
StateContainment (P1, P2).

valid transition(T) :- T is Transition,
StateContainment (T.src,Pl),
StateContainment (T.dst, P2),
StateContainment (P2, P1).

invalid Transition(T) :- T is Transition, no
valid transition(T).

MAAB Structural validity Rules

contains at least two substates(X) :-
StateContainment (Y, X),
StateContainment (Z,X), Y != Z.

Invalid db 0137 :- X is State,
X.decomposition=0R, no
contains at least two substates(X).
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ESMolL — Behavioral Semantics

* Translational Semantics: Mapping of the modeling language
to a formal domain that has pre-defined operational
semantics

* ESMol Stateflow = Mathworks Stateflow (operational
semantics: Hamon and Rushby, 2007)

State mapping Transition mapping
map (S, Stateflow.state(name, comp, map (T, Stateflow.transition(src, dst, event,
entryAction, duringAction, exitAction, guard, conditionAction, transitionAction,
onAction, order)) order))
:— S is Signalflow.State, := T is Signalflow.Transition,
name = S.name, map (T.src,m _src),
map (S.entryAction,entryAction), map (T.dst,m dst),
map (S.duringAction, duringAction), map (T.trigger,m_event),
map (S.exitAction, exitAction), map (T.guard, guard),
onAction = null, map (T.conditionAction,conditionAction),
map (S.decomposition, comp), map (T.transitionAction, transitionAction),

order = S.order. order = T.order.
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ESMol - Model Verification

* Leverages automated

i translation from
Stateflow Stateflow to NuSMV

o reported in publication
by Miller, Whalen, and

Cofer.

G ((key position>]1 & engine running<l) ->
X (Ignition Logic.engage starter=1l) )



Model +
Property
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[ NuSMV J

Model
Verification

¢/ Decalaration of Yariables for Ports
whike[}

{

#/ Daclrimg Asmumgtions for CBUE Verfication
qnmiq » nondet_daeble(): // Vekie Genavator
CPROVER_sssumefesgine_ruming=0 65 engire_ru
Eum = nndet doubiel): // Yoke Gererater
tﬂllﬁkmm_pnﬁw:ﬂﬁshuosm
//[mﬂmushSdmlim ;
igntierCentrol(kzy_pestion, esgne_reming Gengage
¥/ Verification TOBA Avomaten Diserve Call 3
,Eﬂh_dmn(}gﬂn_m engine_running);

/
/
o
Y
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Stateflow
Model

Verification
Property

(Pattern Based)

Stateflow
- C Code
Generator

Behavioral Code

" Verification Property

-

TGBA =C Code

CBMC Verifiable Code

TGBA Code

cBMC
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Occurrence Meaning Scope Meaning
Pattern Pattern
Existence(P) | 'P’ holds true Globally Defined occurrence pat-
tern must be true always
Immediate if 'P’ occurs at some || Before R Defined occurrence pat-
Response(P | time-step then °S’ occurs tern must be true before
& S) in the next time-step af- occurrence of event 'R’
ter 'P’
Response(P | if 'P’ occurs at some | After Q Defined occurrence pat-
& S) time-step then 'S’ occurs tern must be true after
in the future after 'P’ occurrence of event 'Q’
Precedence(P | 'S’ must have already oc- || Between Defined occurrence
& S) curred before 'P’ occurs | Q and R pattern. must be true
at some time-step between occurrences of
events 'Q" and 'R’, in
that order. Uses strong
until operator (U).
After Q | Analogous to Between @)
Until R and R but uses weak un-

til operator (W).
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LTL A ! b

Formulae y ) i ( 2
l: 1f (state==1 && p) { state = 2; }
2: else 1f (state==1 && !p) { state = 1; }
3: else 1f (state==2 && p && q) {state = 2;}
4: else 1f (state==2 && !'p && Q)

{state = 1;}
5: else { assert(0); }




VANDERBILT

SCHOOL OF ENGINEERING

Agenda

e (Case Study
e Results & Conclusion



* Function
— Control Ignition lights on display
— Actuate engine starter based on ignition
key and engine state
e Signals
— key _pos
— engine_running
— ignition_signal
— engine_starter
 Textual Requirements

— When the ignition key is turned on,
while engine is not running the starter
must engage to actuate the engine and
disengage once the engine is running

— lIgnition light on dashboard must reflect
the status of engine correctly

[(ke_v_p03|t|dln >1)
& (engine_ruhning < 0.5)]

V VANDERBILT
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key_position engage_starter

@

engine_running ignition_signal

- Chart S~

Off
_-2-1 entry: ignition_signal = 0;
] engage_starter = 0;

/ [engine_running < 0.5]
[engme;runnmg[ 0.5]

|
J i/
| \
|

| On
entry: ignition_signal = 1;
engage_starter = 0;

[engmeLunnmg >(0.9]

Start
“~.__ _| entry:ignition_signal = 2;
- during: engage_starter = 1;




1§19

SCHOOL OF ENGINEERING

V VANDERBILT

[ ] [ ] [}

Property | Description Occurrence Pattern Scope Pattern
1 the engine should be already running before | Precedes(P & S)—S precedes P Globally

the ignition light reflects that the engine is S: (engine_running > 0.5)

running P: (ignition_signal == 1.00)
2 if the ignition key is turned on when the engine Immediate Response(P & S) — S occurs | Globally

is not running then the starter should get next after P

engaged so as to start the Engine S: (engage_starter == 1.00)

P: (key_position > 1.00 &&
engine_running < 1.00)

3 always whenever the ignition key is turned off Immediate Response(P & S) - S occurs | Globally
while the starter is on then in the next time step | next after P
the starter should get Disengaged S: (engage_starter < 1.00)

P: (key_position < 1.00 &&
engage_starter > 0.00)
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lgnition Controller - Results

* CBMC bound set to 30

* Property 1 is not violated

* Property 2 & 3 are violated

* Results consistent with NuSMV

* Counter-examples analogous to those
generated by NuSMV

- Code generator is correct with respect to
the checked properties
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Conclusions

Verification of CPS is paramount

Formal methods need to be applied

holistically to model-based CPS design tool
chains

Scalability of verification methods is a huge
parrier to widespread adoption — that need to
oe addressed by pragmatic approaches

Presented an example CPS toolchain with
application of formal methods to multiple
aspects of the toolchain



