Formalization of Software Models for Cyber
Physical Systems

Sandeep Neema®*, Gabor Simko, Tihamer
Levendovszky, Joseph Porter, Akshay Agrawal,
and Janos Sztipanovits

Institute for Software Integrated Systems
Vanderbilt University

Email: sandeep.neema@vanderbilt.edu

VANDERBILT

SCHOOL OF ENGINEERING

Agenda

e Context & Motivation

* Background
— ESMolL Design Toolchain
— Semantic Backplane

* Formalization of ESMolL
— Structural Semantics
— Behavioral Semantics

— Model Verification
— Code Verification

e (Case Study
e Results & Conclusion

V VANDERBILT

1§19

SCHOOL OF ENGINEERING
s s . s

Heterogeneous Domains &
Abstractions

CPS Examples

>
&

Model Fidelity

g9
Model
Abstractions

* CPS are mechatronic systems, characterized by tight integration between computational,

communication, and physical components

* Design of CPS involve heterogeneous domains, involve multiple abstractions, and multiple

models with varying fidelities

VANDERBILT

SCHOOL OF ENGINEERING

~ CPS Design Toolchains : OpenMETA

1§19

V

Modeling & Componen |<____ Desiens |<____ Design] Test 1 Parametric]<__ Cyber
Model- ts g Spaces Benches Explorations Models
Synthesis \L \L
v YV _V V V VvV
CyPhy Component Design wossee | oo | st] Forma PET/PCC Code
Generators Generator Generator FEA o | Ve Generator Generator
Cgmpogln&n Framﬂmr& v v
Generated . “ADM N — \ ") B \ . \
(domain tOOI) ACM files files .cmd emd emd f’:: .py files
artifacts ‘l’ ‘l’ ‘l’ ‘l’ ‘l’ ‘l’ ‘l’ ‘l’
Perform Job Manager
. (client application)
analysis
Y Analvsi 4E V. V VvV VvV vV v
Creo QR Cyber
EXecution n a yS I S a n Xec u tl O OZG'I‘A oop:“.;lp f::sl Hyl;ids OpenMDAO Dyrz:i-lrr:ics
runtime § Framework E: vV Vv v
stp .stp
Results File system and/or on Vehicle Forge pundll Il IR [Joon
storage v v V.V VvV V. Vv v
Visualization Project Analyzer — Dashboard
results (offline or online; runs in a web browser)
Oper:tic:nal I System: Physical Components + Computational Runtime (Hardware/Software)
ystem

CPS Design toolchains are complex, involve many different models, modeling languages,
model transformations, and semantic domains

1§19

VANDERBILT
SCHOOL OF ENGINEERING
Formalization of CPS Toolchains

Provable Correctness of CPS depends on many factors:
* Correctness of Modeling Language(s)

e Correctness of Model Transformation Tools

e Correctness of Models

Correctness of (auto-generated) Software

e Correctness of Runtime

VANDERBILT

SCHOOL OF ENGINEERING

§
Agenda

* Background
— ESMolL Design Toolchain

1§19

VANDERBILT
SCHOOL OF ENGINEERING

Embedded Systems Modeling (ESMolL) Toolchain

~_|Functional
: Design

e

ortengo_noural

HW Config. Design

m

VxWorks_PPC FPGA

p]
o § 3
2
o
3

3 9 3 £ omd :
‘m:0:0:0:0:0
2 a o ; R

2 31 313

H 1d.|

ning Module Message 1

gnal uisition and Conditio
)

o % Deployment

L

)

Battery ECU Message 1

System Config,

ESMol is a toolchain for design, simulation, analysis and

synthesis of controllers

SCHOOL OF ENGINEERING

N} ESMolL Example: VANDERBILT

re

Processor
Platform Design
Model
)|
Gumstix

Block == Component Instance
2 -

UARTIn1

Port == Message Instance

o

V{é'

InnerLoop
I

Message
Assighment

DataHandler OuterLoop

Software

Depl t
‘P Oy_l_liejl_ _____________ Component

5 : Assignment

Logical Architecture
(Dataflow)

SOFTWARE

IMPLEMENTATION

DataHandler

OuterlL.oop

ReferenceHandler

VANDERBILT

SCHOOL OF ENGINEERING

ESMoL Use case:

SOFTWARE
IMPLEMENTATION

SOFTWARE

GENERATION

ANALYSIS

& EXECUTION

Proc RS 4MHz 0s 0s
Comp InnerLoop =50Hz 1ms
Comp DataHandling =50Hz 1ms SChed u Ie Spec
Comp ADC =50Hz 1us a 00 Yo
Comp Serialln =50Hz 1ms -
Comp SerialOut =50Hz 1ms ~ ° Yifebeende) =
b Msg DataHandling.sensor_data 8B RS/ADC RS/DataHandling — TR
o E Msg DataHandling.pos_ref 8B RS/Serialln RS/DataHandling
PosDatapsgExec AltReMMsgExec ‘ Msg InnerLoop.thrust_commands 8B RS/InnerLoop RS/SerialOut }’EE@
DOSReﬂnMngxecRelerenceHandler Msg LocalOrder 1B RS/DataHandling RS/InnerLoop z = g T o Analogout
o

RS_Sched

RS

Component Timing Proc G5 100MHz 05 05 } Bl pe

Comp OuterLoop =50Hz 1ms - . g
12 shese
Parameters: Bus T 12€ 100kb 1ms : ggerec —L
o z

Msg OuterLoop.ang_ref 8B GS/OuterLoop RS/InnerLoop ﬂél

O TTSCh ed u Ie = Sta rt ti mes | _Msg DataHandling.pos_msg 8B RS/DataHandling GS/OuterLoop)] E Respanse
in the start of a hyperperiod ...
. Ayperperiod 20 ms . =nul
* ExecPeriod EGEE

se
// Determine start of current hyperperiod
kernelData->hyperperiodStart = ttCurrentTime();

GS/OuterLoop_0 9.495

}
// Otherwise we should schedule a task

® WC DU ratlon Attributes ’ Preferences I PlODelllesl *1,7 Ve are woken up, now schedule the task
TTSchedule 0.015 2:;1:?':]";2;:5 Sc aato 2 1:t:;;;:rrentTask—)se:nnd.c_str())i
. _08. askit;
ExecPeriod 20ms

Generated Task == EE—__——

RS/InnerLoop_0 9.495

. k list
WCDuration 1.5ms RS/DataHandling_0 10.495 . ent?:skpzlaéi;ewata—>tasks.begin();
Fefseralou 0 1863 Execution Code Sz

t of here

TT_l2C/OuterLoop.ang_ref_09.175 N

TT_I2C/DataHandling.pos_msg_0 10.815 7/ Determine time of the next task to be executed
- - o— double taskTime = kernelData->currentTask->first +
kernelData->hyperperiodStart;

ESMol | _:> Scheduler Spec (.scs) i
Model Generator !

File

Scheduler TrueTime Simulink Model (mdl)
Task Execution Code (C)

2
Importer ::]Schedulé,r Result (.rslt)

| s| (Semantic Backplane VANDERBILT
o o ° SCHOOL OF ENGINEERING
Specification Layers

Functions (Meta)Models Languages Tools Roles
e GME : DSMLsp';t:llk:aﬂo::g
Metamodeling =) MetaGME | MetaGME2 | = Metaprogrammable
g I - Formula « Bridge to other MBDT
il S TP ———— eeason ¢ Transf. spedﬂcaﬂon
. [EsesEa e B * GReAT * Complling o
Transformation |-, = UMTL e UDM transformations
.) * G matching -
Modeling | S - (Python, C++) | , goN2 baee operations
[T [donsin OFA { - * Formal spedﬂm
Formal | e I e * Model | . Motamodel checking
. 2 [qo?e. 3-17%'9--5--???: . Visualizer * DSML oomPosmon
Metamodellng 2 fgi:i:\:it?]‘ansnmn ©i= (src: State, * Evolving structures
7 pr,ivmi‘fc:i”\\{,éwturrent 1i= (st: State). e Trace Gen" ¢ Moadgeneraﬂon
1 | transform Step<fire: inl.Event> from DFA FormUIa * Model validation
outl.State(x) ;- inl.State(x). o o Semantics for
FOl'ma| § outl.Event(x) :- inl.Event(x). (MSR) ° Semantllc complex DSMLs
o outl.Transition(s, e, sp) :- inl.Trans o °
TranSformatIOn : outl.Current(sp) :- inl?gurr'ent(s) , 11 AnChOlﬂlng m of
Modeling : } outl.Current(s) :- inl.Current(s), fai . C) in
invariants

VANDERBILT

SCHOOL OF ENGINEERING

Agenda

* Background

— Semantic Backplane

Formalization of Structural Semantics

L_< Y’C([]')ie]>

(={rERY|r|=C}

Key Concept: DSML syntax is understood as a constraint

system that identifies behaviorally meaningful models.
Structural semantics provides mathematical formalism
for interpreting models as well-formed structures.

Y: set of concepts,

R, : set of possible
model realizations

C: set of constraints
over R,

D(Y,C): domain of well-

formed models

[]: interpretations

Jackson & Sz. 2007
Jackson, Schulte, Sz.
‘2008

Jackson & Sz. ‘2009

Structural Semantics defines modeling domains using
Algebraic Data Types and First-Order Logic with Fixpoints.
Semantics is specified by Constraint Logic Programming.

Use of structural semantics:

« Conformance testing: xeD

« Non-emptiness checking: D(Y,C) # {nil}

* DSML composing: D; * D,|D; + D,|D" includes D
* Model finding: S={s€D|s| =P}

* Transforming: m'=T(m)ym' eX;meY

Microsoft Research Tool: FORMULA
» Fragment of LP is equivalent to full first-order logic
* Provide semantic domain for model transformations.

VANDERBILT

SCHOOL OF ENGINEERING

VANDERBILT

SCHOOL OF ENGINEERING

| (| (Explicit Methods for Specifying k-
Behavioral Semantics 1/2

aaaaaaaaaaaaaaa

Representation as AST

<

i
st
<aloms
k-
me | L] o e |||[Tense | | oo et
<o et - et

D(Y,C)=¥ER, |7 |=C ﬁ ﬁ

C++ Interpreter/GeneratorEXpliCit Graph rewriting rules

N — A~ . s " g o ‘g "‘ :g f F'] F:“ "

[]ZRYHR. “ ? = =

I \7

D(Y', C') = {VERy, |7 |= C'} Executable Executable Code Executable
Specification
R ' R . Model
[] r 2 By (Simulators)

Heterogeneous math domain; Reasonable tool support;
Operational semantics Easy to understand

VANDERBILT

SCHOOL OF ENGINEERING

6] Explicit Methods for Specifying \ Y/
Behavioral Semantics 2/2

DWC)%E&||C

| R, >R,
D(Y',C)={rER, |r|=C'}
]R — R,

Single math framework
Unified approach

1§19

VANDERBILT
SCHOOL OF ENGINEERING

[CPS Tool Chain }<— Test Suite CPS Language/s Formal Language
‘1' Specification
Generated 'T‘
Reference Feedback, error correction
Semantics
v . \L { CPS Language }
Comparison

l

{ Formal Language Specification }

[o Formal Transformation } with Description
Specification —
Language
Specification
Excerpts

'T\ Informal Language
Feedback, error correction Specification (Docs)

VANDERBILT

SCHOOL OF ENGINEERING

* Formalization of ESMolL
— Structural Semantics
— Behavioral Semantics
— Model Verification
— Code Verification

VANDERBILT

. SCHOOL OF ENGINEERING

. oAt e ESMo|

Structural semantics of Stateflow sub-
language of ESMolL

Behavioral semantics of Stateflow sub-
language of ESMolL

Formal verification of Stateflow models using
NuSMV

Formal verification of code-generated from
ESMolL-Stateflow

1§19

State ::= new

Terms

(name:String,
decomposition: {OR,AND},
entryAction:String,
duringAction:String,
exitAction:String,
order:Integer).

StateContainment ::= fun (State =>

Transition

State + Subsystem).

= new (name:String,
src:Transition Source,
dst:Transition Destination,
guard: String,
condition_action:String,
transition action:String,
order:Integer).

V VANDERBILT

SCHOOL OF ENGINEERING

ESMolL - Structural Semantics

Structural validity Rules

valid transition(T) :- T is Transition,
StateContainment (T.src, P),
StateContainment (T.dst,P) .

valid transition(T) :- T is Transition,
StateContainment (T.src,Pl),
StateContainment (T.dst, P2),
StateContainment (P1, P2).

valid transition(T) :- T is Transition,
StateContainment (T.src,Pl),
StateContainment (T.dst, P2),
StateContainment (P2, P1).

invalid Transition(T) :- T is Transition, no
valid transition(T).

MAAB Structural validity Rules

contains at least two substates(X) :-
StateContainment (Y, X),
StateContainment (Z,X), Y != Z.

Invalid db 0137 :- X is State,
X.decomposition=0R, no
contains at least two substates(X).

1§19

VANDERBILT
SCHOOL OF ENGINEERING
ESMolL — Behavioral Semantics

* Translational Semantics: Mapping of the modeling language
to a formal domain that has pre-defined operational
semantics

* ESMol Stateflow = Mathworks Stateflow (operational
semantics: Hamon and Rushby, 2007)

State mapping Transition mapping
map (S, Stateflow.state(name, comp, map (T, Stateflow.transition(src, dst, event,
entryAction, duringAction, exitAction, guard, conditionAction, transitionAction,
onAction, order)) order))
:— S is Signalflow.State, := T is Signalflow.Transition,
name = S.name, map (T.src,m _src),
map (S.entryAction,entryAction), map (T.dst,m dst),
map (S.duringAction, duringAction), map (T.trigger,m_event),
map (S.exitAction, exitAction), map (T.guard, guard),
onAction = null, map (T.conditionAction,conditionAction),
map (S.decomposition, comp), map (T.transitionAction, transitionAction),

order = S.order. order = T.order.

VANDERBILT
SCHOOL OF ENGINEERING
ESMol - Model Verification

* Leverages automated

i translation from
Stateflow Stateflow to NuSMV

o reported in publication
by Miller, Whalen, and

Cofer.

G ((key position>]1 & engine running<l) ->
X (Ignition Logic.engage starter=1l))

Model +
Property

i

[NuSMV J

Model
Verification

¢/ Decalaration of Yariables for Ports
whike[}

{

#/ Daclrimg Asmumgtions for CBUE Verfication
qnmiq » nondet_daeble(): // Vekie Genavator
CPROVER_sssumefesgine_ruming=0 65 engire_ru
Eum = nndet doubiel): // Yoke Gererater
tﬂllﬁkmm_pnﬁw:ﬂﬁshuosm
//[mﬂmushSdmlim ;
igntierCentrol(kzy_pestion, esgne_reming Gengage
¥/ Verification TOBA Avomaten Diserve Call 3
,Eﬂh_dmn(}gﬂn_m engine_running);

/
/
o
Y

VANDERBILT
SCHOOL OF ENGINEERING

10N

Stateflow
Model

Verification
Property

(Pattern Based)

Stateflow
- C Code
Generator

Behavioral Code

" Verification Property

-

TGBA =C Code

CBMC Verifiable Code

TGBA Code

cBMC

Vv

Occurrence Meaning Scope Meaning
Pattern Pattern
Existence(P) | 'P’ holds true Globally Defined occurrence pat-
tern must be true always
Immediate if 'P’ occurs at some || Before R Defined occurrence pat-
Response(P | time-step then °S’ occurs tern must be true before
& S) in the next time-step af- occurrence of event 'R’
ter 'P’
Response(P | if 'P’ occurs at some | After Q Defined occurrence pat-
& S) time-step then 'S’ occurs tern must be true after
in the future after 'P’ occurrence of event 'Q’
Precedence(P | 'S’ must have already oc- || Between Defined occurrence
& S) curred before 'P’ occurs | Q and R pattern. must be true
at some time-step between occurrences of
events 'Q" and 'R’, in
that order. Uses strong
until operator (U).
After Q | Analogous to Between @)
Until R and R but uses weak un-

til operator (W).

VANDERBILT

SCHOOL OF ENGINEERING

VANDERBILT
SCHOOL OF ENGINEERING

LTL A ! b

Formulae y) i (2
l: 1f (state==1 && p) { state = 2; }
2: else 1f (state==1 && !p) { state = 1; }
3: else 1f (state==2 && p && q) {state = 2;}
4: else 1f (state==2 && !'p && Q)

{state = 1;}
5: else { assert(0); }

VANDERBILT

SCHOOL OF ENGINEERING

Agenda

e (Case Study
e Results & Conclusion

* Function
— Control Ignition lights on display
— Actuate engine starter based on ignition
key and engine state
e Signals
— key _pos
— engine_running
— ignition_signal
— engine_starter
 Textual Requirements

— When the ignition key is turned on,
while engine is not running the starter
must engage to actuate the engine and
disengage once the engine is running

— lIgnition light on dashboard must reflect
the status of engine correctly

[(ke_v_p03|t|dln >1)
& (engine_ruhning < 0.5)]

V VANDERBILT

SCHOOL OF ENGINEERING

key_position engage_starter

@

engine_running ignition_signal

- Chart S~

Off
_-2-1 entry: ignition_signal = 0;
] engage_starter = 0;

/ [engine_running < 0.5]
[engme;runnmg[0.5]

|
J i/
| \
|

| On
entry: ignition_signal = 1;
engage_starter = 0;

[engmeLunnmg >(0.9]

Start
“~.__ _| entry:ignition_signal = 2;
- during: engage_starter = 1;

1§19

SCHOOL OF ENGINEERING

V VANDERBILT

[] [] [}

Property | Description Occurrence Pattern Scope Pattern
1 the engine should be already running before | Precedes(P & S)—S precedes P Globally

the ignition light reflects that the engine is S: (engine_running > 0.5)

running P: (ignition_signal == 1.00)
2 if the ignition key is turned on when the engine Immediate Response(P & S) — S occurs | Globally

is not running then the starter should get next after P

engaged so as to start the Engine S: (engage_starter == 1.00)

P: (key_position > 1.00 &&
engine_running < 1.00)

3 always whenever the ignition key is turned off Immediate Response(P & S) - S occurs | Globally
while the starter is on then in the next time step | next after P
the starter should get Disengaged S: (engage_starter < 1.00)

P: (key_position < 1.00 &&
engage_starter > 0.00)

VANDERBILT

| S I s . SCHOOL OF ENGINEERING

lgnition Controller - Results

* CBMC bound set to 30

* Property 1 is not violated

* Property 2 & 3 are violated

* Results consistent with NuSMV

* Counter-examples analogous to those
generated by NuSMV

- Code generator is correct with respect to
the checked properties

VANDERBILT

SCHOOL OF ENGINEERING

Conclusions

Verification of CPS is paramount

Formal methods need to be applied

holistically to model-based CPS design tool
chains

Scalability of verification methods is a huge
parrier to widespread adoption — that need to
oe addressed by pragmatic approaches

Presented an example CPS toolchain with
application of formal methods to multiple
aspects of the toolchain

