Flexible Modular Formalization of UML Sequence Diagrams

Luciano Baresi, Mohammad Mehdi Pourhashem K., Matteo Rossi

Politecnico di Milano (DEIB)

Outline

5. Modular
Semantics

4. Semantic
Variation
Points

2.Formalizing
SD with CF

meanings of
SD

6. Initial
Evaluation

@ 1.Introduction

1.1 UML Formal Verification O
UNIFIED

MODELING
LANGUAGE

» Model defects are a significant concern as model transformations and code
generation may propagate errors to other notations where they are harder to

detect and trace.

» UML formal verification comes into help by

— Transforming UML models into mature and well-know formalism (Petri net,
Temporal Logic, LTS, ...)

— Checking the correctness of user-defined properties with respect to the
formal model.

1.2 Sample Sequence Diagram (SD)

sd: SDSearcH
app serverl server2 screen
I [[[
T | | " ok
pa | pingS1() il I I Combined Fragments (CFs)
I | |
/ p— h ————— /L ————— h — — '
| | pingS20 | |
/v t f —1 |
L J J I
[T T T T
aly : replyS1() : : :
P i I I
) | | n | B4 /
Operands (OPs) 1 | ' : /
ﬁa/J : : replyS2() : : /
I
= | | ! q
£ 1 1 i
\ |009J : searchNextS1()\: : :
I = I I
21 resultS1() : ' :
= : | updateResultS1() |
| . ' .
I [I I
I I I I
| . rE———
] I [I I
I . | I replyS2() I I e
! = | 1 J I .
[| | | |

2. Formalizing SD with CF

5. Modular

i _’ o .‘l . y >) ==
s & 2 4 s .
e - , , Semantics
23—
it 4. Semantic
2.Formalizing YETSETT
SD with CF — Points

meanings of
SD

(/ 6. Initial

@ 1.Introduction .
Evaluation

2.1 Formalizing SD with Combined Fragment (CF)?

Specifying meaning of different CFs.

Mapping UML elements to their corresponding atomic proposition.

Writing semantics?! for every CF, that corresponds to their meaning.

1. Formal semantics are written in TRIO logic (on which formal methods researchers at Politecnico di
Milano have been working more than 20 years).

3. Many meanings of SD

5. Modular Oy

(Y Semantics
i 4. Semantic
2.Formalizing Variation
SD with CF Points
3. Many

meanings of
SD

6. Initial

@ 1.Introduction .
Evaluation

3.1 Many Meanings of SD

Why are there many meanings?

» OMG’s semantics is not specified in detail to allow using UML in many domains.
When UML is used in a concrete domain, the modeler has to choose from the

different possible variants.

> Besides, some authors do not completely comply with OMG’s semantics, which is
very permissive and counter-intuitive in some cases.

3.2 Many Meanings of SD

> More than 10 groups of authors proposed their semantics based on their
interpretation and preference.

» Configurability is missing in their semantics, which led them to fail in realizing
OMG’s ambition of keeping UML useful for many domains.

» We identified those variation points that are important for verification purpose
analysis.

4. Semantic Variation Points

5. Modular
Semantics

4. Semantic
Variation
Points

2.Formalizing
SD with CF

3. Many
meanings of
SD

@ 6. Initial

@ 1.Introduction .
Evaluation

10

4.1 Semantic Variation Points

N\
w How to combine CF with the rest of SD?
\
@ How to combine Loop with the rest of SD?
@When CF’s guard(s) should be evaluated?
[
@Which operand should be chosen?
/

11

4.2 Semantic Variation Points [combine]

[Combine]: How to combine CF with the rest of SD?

1. Synchronized (SYNC):
All lifelines must enter and leave CF in a synchronized way.

2. Weak Sequencing (WS):

Every lifeline is allowed to enter or leave CF as soon as it is done with its
preceding events.

12

4.3 [combine].SYNC vs. [combine].WS
sD1 When 12.a = 0:

Only possible sequence of events for SYNC
IS
Im1, ?’m1, Im3, ?m3

11 12

ml

Optl |

V.

Whereas in WS, there are more sequences
of events including
Im3, Im1, ?m3, ?m1

[12.a > 0]
m2

m3

SRS IR N A A

ey WEEREEEES PR

13

4.4 Semantic Variation Points [Loop]

[Loop]: How to combine Loop with the rest of SD?

1. Synchronized (SYNC):
All iterations are strictly separated.

2. Weak Sequencing (WS):
Events in different iterations can be interleaved.

14

4.5 [Loop].SYNC vs. [Loop].WS

sp1 J SD1)

11 12 11 12
] [] [
: : | m1 I
1 1 VLS 1 m2 >:
Ioop] : : o— - >
. ' . -
(210 ! m1 - i m1 :
: m2 : : m2 >’:
I = f —>
| 1 1 1

' H

SYNC: {<Im1,!m2,’m1,?m2,!m1,!m2,?m1,?m2>, ...}

WS:
{<Iml,,'m2,,!ml,,'m2,,”ml,,”m2.,”ml,,°m2.,>, ..}

15

4.6 Semantic Variation Points [When]

[When]: When CF’s guard(s) should be evaluated?

1. Single global time (SGT):
When all lifelines are ready to enter CFx they evaluate the guard(s) in a
synchronized manner. (consistent iff CFx.[combine] = SYNC)

2. Independent local times (ILT):
The first lifeline that reaches to CFx evaluates the guard(s), and forces other
lifelines to follow its footstep. (consistent iff CFx.[combine] = WS)

16

4.7 Semantic Variation Points [choice]

[Choice]: Which operand should be chosen?

In Alternative CF if there are several true guarded operands, there are two options
to choose one operand among them.

1. Nondeterministic (ND):
One of true guarded operand is chosen nondeterministically.

2. First from top (FFT):
First true guarded operand from top of Alternative CF is chosen.

17

9]
s
-
at
—
(qv)
—
&)
)
-
=
D]
N
o
N
oo
<

Config1
Config2

s e, R e - -5 -8 -
)
Ml In o} Iinll SR} [En
E 1E WL < B L Z P
O,
= £
= of |k

g (ol 5 0 ol 5
MS huuS
3 |10 O
I B
=, 0))
2 0
0 o)
m > :
O,

|

/)

[c¢]
il

5. Modular Semantics

5. Modular
D Semantics
2.Formalizing
Oll 0C 0

19

5.1 Modular Semantics

> Ordering semantics: > Combined Fragments
— OrderMonoD(evl, ev2, guard, exception, isConcur) — AItCF(Alt, config)
— OrderMonoDRev(evl, ev2, guard, exception, isConcur) — OptCF(Opt, config)
— Order(evl, ev2, guard, exception, isConcur) — ParallelCF(Parallel, config)

> Borders(Module, exception) — LoopCF(Loop, config)

> Auxiliary Operators » Link_Pre_Post(CF, config)

— SomFlIn,(ev; enclosingModule) > Combine(Module, config)

— SomPlIn;(ev, enclosingModule)

20

5.2 Mono-Directional Order

If the guard holds at the moment evl occurs, ev2 will happen. But if we have ev2
now, it does not necessarily mean that we had ev1 earlier.

It is used when ev2 has several triggers including ev1.

i i def
OrderMonoD(ev;, evo, guard, exception, isConcurrent) =

(1) if isConcurrent = true
(1) A (2) otherwise

Untilei ((—ev1 A —ewv2), exception) V
evy N\ guard =-]] i
Untilei ((—ev1 A —exception), evs2)

(1)

evi /N guard = —eva. (2)

21

5.3 Mono-Directional Order Reverse

ev2 is preceded by true guarded evl. But having true guarded evl does not

necessarily mean that ev2 will occur.

It is used when ev2 is one of possible consequences of true guarded evl.

. . def
OrderMonoDRev (ev1, eva, guard, exception, isConcurrent) =

(1) if isConcurrent = true
(1) A (2) otherwise

evy = Sinceei((—eve N —mexception), (ev1 A guard)). (1)

ev1 N guard = —eva. (2)

22

5.4 Bidirectional Order

If true guarded ev1 occurs, ev2 will happen and if ev2 occurs, it means that we had
true guarded evl.

. . def
Order(ev1, eva, guard, exception, isConcur) =

OrderMonoD(ev1, eva, guard, exception, isConcur) A

OrderMonoDRev (ev1, eva, guard, exception, isConcur)

23

CF Alt

5.5 Mapping UML Elements to Atomic Propositions

CF Alt Op,

SDI

11

e »e(2)

®. &) |®
Tan /

®¢-———o- ——————————————— ——

Op:

®

_’.®

®, @ ®

®] @] ®

(e > (13

3. Alt_I1_Start

4. Alt_|12_Start

5. Alt Start

6. Alt_Op,_I1_Start
7. Alt_Op, 12_Start
8. Alt_Op, Start
11. Alt_Op,_I1_End
12. Alt_Op,_I12_End
13. Alt_Op,_End
14. Alt_I1_End

15. Alt_12_End

16. Alt_End

24

5.6 AItCF (WS, ND) vs. AltCF (WS, FFT)
AltCF(WS, FFT):

Borders(Alt, Sstop) (6)

(\/ Alt—L’.iS'ta/rt = Alt) N\ (AltSta'rt — \/ Alt—Lgtart) (7)
z2—1 z—1

}n\ /n\ Order(Alt—Lg'ta'rt’ Alt_OPi_Ligtarta

) (8)

i—1 j=—1 Alt_OP?*, Sstop, true)
7\ /”\ OrderMonoD (Alt_OP*_Lg,.4. Alt_L7, . (9)

im1 j—1 true, Sstop, true)
Alt_OPgar < (—(\/ Alt_Guard®) N\ Altstart) (10)

=1
m)) i—1 .
/\ Alt_OPsory < Altsiars NAlt_Guard® N— \/ Alt_Guard’
i=1 =1
(14)
\/ Alt_OP%,.q <= AltEna (12)
i€ [1,m]|UFElse

/\ (Alt_OPsiory = Altsiare N Alt_Guard®) (13)

2—1

25

5.7 Alternative CF (SYNC, ND)

If the choice of [Combine] is SYNC instead of WS, the positive traces are a subset of
those allowed by WS, since there are additional constraints on the start and end of

the combined fragment. More precisely, in this case the following formula is added:

(Altstart < [\ Alt_L5s0,)N(Altpna <)\ Alt_Li,q) (15)

=1 =1

26

6. Initial Evaluation

()
SD with Ck
2 lutlanyy
meanings ot
SD
O rtroductio O 6. Initial

Evaluation

27

6.1 Our Verification Tool (Corretto)

IDE Modelling Window

o

1‘ “ “ - lTl

. — -

Class Object P

: . IODs 3]

Diagrams Diagrams o

S g

E;

— — : . |[Mappings | — g

L u State Sequence prTo'::w §

ser : , —
Machines Diagrams Diagram
export @ ﬁ results
transformation input

Formal
XMl < /> d> model m d> 20T X

=
https://qithub.com/mmpourhashem/CorrettoUML

6.2 SDSearch

We extended our verification tool, Corretto,
to support SD with CF, and performed some
experiments regarding History Checking and
Completion (HCC), property checking, and
time constraints on this SD.

HCC:
T1 = {{!?pingS1, !pingS2), (IreplyS1), (?pingS2)}

Property:
Pl d:ef Alw replySIStart N\ mtr(replySZStart7 1) =
—SomFIn;(searchNextS2start, SDSearch)
Time Constraints:
(Qupdate ResultS1gna — QupdateResultS1start) > 1

updateResult End — QupdateResult Start) =
Qupd R tS2 Q d R tS2 1
(@SDSearchgna — QSDsearchstart) < 8

sd: SDSearcH
app serverl server2 screen
]]]]
t t T I
par) ! : | | | | Combine: WS
_) : pingS1() /: : : Loop: WS
e — e ———— — e ——— —— e — — | | Choice: ND
| | pingS20 | |
t — |
L J J I
) : : : :
a I replyS1() , | |
e | 1 I
| | | |
] [1 1
_)Pa'] : replyS2() : :
|y T 1 |
| | | |
. S — g — — — — — S — —_ — — — S — — — o— — . —
| 1 1 1
loop/ | searchNextS1(L: : :
I | | |
2 ! resultS1() : !)
:/ : : updateResultS1() :
' ¢ ¢ —
| [I [
T T T T
A R e e e [e e e s e e e E——
| 1 1 1
| | replyS2() | |
l |] |
! ! ! !
pay | replys1() | : :
: | | l
R e Giglps e G daesk ® 5 Jor m ReaeaS s S A e B e wes 2 iz
| 1 1 I
loo : : searchNextS2() : :
| I I T I
o | | | |
(2] ! ! resultS2() ! :
I I | updateResultS2() |
I 1 | ~J
| | | |
| | | |
H | | |
1 | | |

6.3 Initial Evaluation

T1

12

P1

P2

TC

Result
Time -s
Result
Time -s
Result
Time -s
Result
Time -s
Result

Time -s

UNSAT
6
UNSAT
6
PASSED
14
PASSED
13
UNSAT
12

UNSAT
6
UNSAT
6
PASSED
11
PASSED
11
UNSAT

31
UNSAT
15
FAILED
41
PASSED
57
UNSAT
30

27
UNSAT
14
PASSED
36
PASSED
37
UNSAT
24

40
SAT
40
FAILED
64
PASSED
53
SAT
42

33
SAT
38
PASSED
46
PASSED
41
SAT
34

30

7. Conclusion and Future Work

> We presented a modular semantics for UML SD that accommodates existing
interpretations.

» First evaluation of the six possible configurations we have identified through
Corretto is presented.

» The plan for the future is to cover the whole set of combined fragments.

> Coming soon ...

& encoding for Bounded Satisfiability Checking of LTL formula (and also MTL and
CLTLB with bounded variables), which is both faster and more memory efficient,
i.e. it is able to check bigger models (and 100 times faster for some models).

Questions?

pourhashem.kallehbasti@elet.polimi.it

