From an Abstract Specification in
Event-B toward an UML/OCL
Model

Imen Sayar (LORIA/MIRACL)
and

Mohamed Tahar Bhiri (MIRACL)

In FormaliSE2014, June 3'1 2014, Hyderabad, India

Plan

1. Problematic

2. Hybrid approach of software development
3. Event-B and EM-OCL

4. Case study in Event-B : SCEH

5. From Event-B to UML/OCL

6. Conclusion and future works

Problematic

Classical Approach

Oversights

and W

ambiguity

Errors W
Errors W

Errors W

Requirement
s Document

| Software not alwa
- ys
: correct (bugs)

Correct
Software and
Systems ?
Complexity ?

Problematic

Software Engineering:

- Refinement

* Formal methods: _ Proofs

- Logic and set theory
* Test technics: \i - Functional Test
- Structurel Test

* Hoare Logic > Precondition and postcondition

* Model-checking, ...

Formal developement process

8 Formal process in software developement encounters
some difficulties as:

¥ Exclusion of non-expert actor in formal methods — Validation activity

¥ Maintenance —> Reviewing of formal models
¥Choice of the refinement strategy

¥ Difficulties related to the interactive proving

Rewriting

v

Structured
Requirements
Document

v

> Formal Approach

Abstract Specification

(Event-B)

¥

Horizontal Refinement

v

Design

v

Coding

> Semi-formal Approach

v

(UML/OCL)

Integration

Hybrid Approach of

software development

Requirements document in n:;urevllvanguage._[l quﬂcesse tplmgwents

l Phase 1

Structured requirements document

Phase 2
\ 2

Initial abstract model in Event-B

" Phase 3
\"

Final abstract model in Event-B

Phase 4
\ 4

Validated final abstract model in Event-B

Phase 5
\ 4

Pivot UML/EM-OCL model

l Phase 6

Initial UML/OCL model

l Phase 7

Final UML/OCL model

__document

- Oversights

- Ambiguity, lack of informations

- Two separated texts (J.R Abrial) :

- Explicative text:
* all system details
* main reference

- Reference text:
* most important constraints
* short, simple and labelled sentences
written in natural language (tragability)

¥ Difficult task and needs an intense intervention of
the developer

Requirements document in naturel language

l Phase 1

Structured requirements document

Phase 2
\ 2

Initial abstract model in Event-B

" Phase 3
\"

Final abstract model in Event-B

Phase 4
\ 4

Validated final abstract model in Event-B

Phase 5
4

Pivot UML/EM-OCL model

Phase 6
\ 4

Initial UML/OCL model

l Phase 7

Final UML/OCL model

Construction of a UML/OCL
[Flattened Event-B model]B models

A\ 4

[UML/EM-OCL model]

[Initial UML/OCL model]

[Final UML/OCL model]

10

Assessment

(J Coherent and validated formal specification of the future software/system

(J Reuse of design patterns and class libraries

d Involvement of external actors not necessarily experts in formal methods

 Possibility of automatic generation of test data

1 Bridge between Event-B and UML/OCL: UML/EM-OCL

Event-B and EM-
OCL

Event-B

- Mathematical approach

- Formal models correct by construction

- Refinement

- Verified and validated models via proofs and animation/model-
checking (ProB, AnimB, JeB,..)

- Rodin platform open source (http://www.event-b.org/)

EM-OCL: Mathematical Extension of OCL

- Integration of mathematical concepts Pair, Binary Relation and Function

- Three existant uses (Bhiri et al.) :
= Refinement in UML

= Validation of class diagrams (invariant construction proposed by
EM-OCL)
= EM-OCL as a request language

- Other use UML/EM-OCL as pivot language between Event-B (the
formal) and UML/OCL (semi-formal)

The EM-OCL library

- Augmentations related to the standard OCL library

G 1

Collection |

.....

EM-OCL vs. Event-B

Correspondences between Event-B set-logical language and UML/EM-OCL

Event-B set-logical language A UML/EM-OCL
Xy Pair(x, y)
A<>B BinaryRelation(A, B)
A-+B PartialFunction(A, B)
Correspolddhces bet Event-B suBiakunction(A, B) UML/EM-OCL
A>»B Partiallnjective(A, B)
Event-B substitution language UML/EM-OCL
X=Y post : x=y
X: ESet_Exp post :Set_Exp-> includes(x)
x: | Before_After Predicate(x) post : Before_After Predicate(x)
X,y=E,F post : x=Eandy=F
f(x)=E post : f->imageElt(x)=E

Requirements document in naturel language

Rule R,

Structured re R
1

R,

Initial abstr R3

R,

Final abstr: 2

(o))

N

Validated final

oo

R
R
R
R
R

9

Pivot Ul R
10

Rll

R13

R
Final \ 14

R15

Label

Fundamental Class

Data Types

Static Attributes

Object Attributes

Static attributes and invariants typing

Object attributes and invariants typing
Constructor

Applicable Methods/Operations

Extracted preconditions from the guards
Extracted post-conditions from substitutions
Skip substitution

Methods and attributes visibility

Passage of implicit guards to explicit constraints
EM-OCL constraints

Event-B and EM-OCL typing correspondences

lllustration

Rulel0: Every substitution in an Event-B event is converted to a post-condition

check_out =

THEN

act3:cards_ad={c}<cards_ad

END

EM-OCL constraints

context Hotel::check_out(...)

post act3:cards_ad=cards_ad@pre ->soustractionDomain(c)

An Electronic Hotel Key
System (SCEH) in Event-B

SCEH: informal presentation

The purpose of this system is to ensure the unicity of access to
hotel rooms by their current clients. This is not the case of hotel
with metallic key system since a previous user of the room may
have duplicated the metallic key. Therefore, access to the
corresponding rooms may be possible at any time by any previous
client. The judicious use of an appropriate electronic key system
could guarantee unicity of access to the rooms by their current
clients... (From “Modeling in Event-B: System and software
Engineering” of J-R Abrial))

Structured Requirements Document:

Referential Text

Reformulated constraint

Constraint type

The access to a room is limited to the user who has booked it.

FUN-1

Each hotel room door is equipped with an electronic lock which | ENV-1
holds an electronic key and which has a magnetic card reader.

A magnetic card holds two distinct electronic keys: k1 and k2 ENV-2
Hotel employees can enter in the rooms with identical cards to | FUN-2
those of clients

The first access of a client to his room is followed by an update | FUN-3
of the key stored in the lock

Access to rooms is controlled by magnetic cards FUN-4

Adopted Refinement Strategy

\.

Hotel MO

sees

refines 1‘

r

Hotel M1

N
{ Hotel Ctx0
J

!

Hotel Ctx1

A

extends

Hotel Ctx3

Level 1

Level 2

Level 3

Level 4

22

Formal Event-B models

CHINE)

Initial Abstract Modwe otel_MO)

CONTEXT)
Hotel_Ctx0)
SETS»)
GUEST)
ROOMD
ENDD

SEES)
Hotel_Ctx0)
VARIABLES)
owns)
INVARIANTS)
invO_1
ownsEROOMBEGUEST
EVENTS)
INITIALISATION 2)
STATUS)
ordinary)
BEGIND
actl: owns=gJ
END)
check_in 2)
STATUS)
ordinary)
ANY)D
gh

r

>

WHERED
grdl: gEGUEST)
grd2: r€ROOMD
grd3 : rédom(owns))
THEND
actl: owns(r)=)
END)
D
check_out 2)
STATUS)
ordinary)
ANYD
gh
r)
WHERE)
grdl : r»g€owns)
THEND
actl: owns=owns\{r»g} D
ENDD

>
ENDJ)

SCEH : From Event-B models
toward UML/OCL class

diagram

<<Data Type>> <<Data Type>> <<Data Type>>
GUEST ROOM KEY

<<Data Type>>
ADMINISTRATOR

-

Rule 2

\

//

Hotel/

uest: Set(GUEST)

oom: Set(ROOM)

ey: Set(KEY)

dministrator: Set(ADMINISTRATOR)

/

Rule
12

first : TotalFunction(Card,Key)
second: TotalFunction(Card, Key)

": Totallnjedive(Room, Key)

owns_adm: TotalFunction(Room, Administrator)

urrk: Totallnjective(Room,Key)
omk: TotalInjective(Room,Key)
ards_adm: PartialFunction(Card, Administrator)

<€
~cards: PartialFundion(Card, Guest)
“ssued: Set(KEY)

Rule 3

Rule 4

< constructor>> +intialisation(G: Set(GUE

<update>=>+check_in3(g: L , c: Pair(Key,Key), a:
< <update>>+check_out3(g: GUEST, r: ROOM, c: Pair{Key,Key))
<<update>>+enter_room_change3(r: ROOM, c: Pair(Key,Key))
<<update>>+enter_room_normal3(r: ROOM, c: Pair(Key,Key))
<<update>>+leave_room3(r: ROOM, c: Pair(Key,Key))

< <update>>+enter_room_normal_adm(r: ROOM, c: Pair(Key, Key))
<<update>>+leave_room_adm(r: ROOM, c: Pair(Key, Key))

Rule 1

Rule 7

Rule 8

25

context Hotel:: check _in3(g: GUEST, r: ROOM, c: Pair(Key, Key), a: ADMINISTRATOR)

pre grd2: Room->includes(r)

pre grd3: (owns->domain())->excludes(r)

pre grd4: Card->includes(c) Rule 8

pre grd5: (first->imagekElt(c))=(currk->imagekElt(r))
pre grd6: issued->excludes(second->imagekElt(c))

pre grd7: (currk->range())->excludes(second->imagekElt(c)) |€ Rule 9

pre grd8: (cards->domain())->excludes(c) \
pre grd9: roomk->imageElt(r)=(currk->imageElt(r)) Rule 15

pre grd10: Administrator->includes(a)
pre grd1l1l: owns_adm->imagekElt(r)=a
pre grd12: (cards_adm->domain())->excludes(c)

post actl: owns->imagekElt(r)=g
post act2: issued=issued@pre->including(second-

>imageElt(c))

€ Rule 10

post act3: cards->imagekElt(c)=g
post act4: currk->imageElt(r)=second->imageElt(c)
post act5: cards_adm->imageElt(c)=a 26

+employer 1

Hotel

< <constructor>>+initialisation(G: Set(Guest), R: Set(Room), K: Set(Key), A: Set(Administrator))

<<query>>+nbGuest(): Integer
<<update>>+check_in3(g: Guest, r: Room, c: Card, a: Administrator)
<<update>>+check_out3(g: Guest, r: Room, c: Card)

¢

manage

Reservation

+reservationNumber: Integer
+entranceDate: Date
+exitDate: Date

Person
1
|l ——
pay_lodging +owner
1
Guest Adm
concern
*
+inhabitant +responsibl
owns,
*
Room

<<update>>+enter_room_change3(c: Card)
<<update>>+enter_room_normal3(c: Card)
<<update>>+leave_room3(c: Card)
<<update>>+enter_room_normal_adm(c: Card)
<<update>>+leave_room_adm(c: Card)

1 0..1 0..1
f +fN
Key
1 1
[
currk +currkN .
1 +firstN
rogmk “+roomkN 1
<
1
. +secondN
+issued
0..%
edit /]\ *

design

Conclusion

@ Hybrid development process : formal (Event-B) and semi-formal (UML/EM-
OCL and UML/OCL)

@ Essential software qualities: correctness, reusability, scalability...
@ Various actors: Event-B specifiers, OO designers, OO implementers and testers
@ Translation rules between Event-B and UML/EM-OCL

@ Refinement rules of UML/EM-OCL by UML/OCL models

@ Case study of electronic hotel key system

Future works

@ jdentity (id) and Cartesian product

@®Properties related to vivacity

@ Automate the Event-B transition to UML/EM-OCL

@ Automate the transition from UML/EM-OCL to UML/OCL

THANK YOU

