Analysis and Testing of PLEXIL
Plans

Jason Biatek, Michael W. Whalen,
Sanjai Rayadurgam, Mats P.E.
Heimdahl, Michael Lowry

04-06-14 FormaliSE - Mike Whalen

04-06-14

Autonomy at NASA

National Aeronautics and Space Administration

&

DRAFT RosorTics, TELE-RoBoTICS AND

Autonomous SYSTEMs RoADMAP
‘ TECHNOLOGY AREA 04

FormaliSE - Mike Whalen

Autonomy Requires Planning

Planning Domain

Actions

-—--‘/—--

:

04-06-14

Flight Rules

Legend:

Tool

—

l SE Artifact

Generated
Artifact

Environment

~v

Planner H/ Plan

FormaliSE - Mike Whalen

Platform

Verification of Planning Systems

Test Criteria
(coverage criteria)

Legend:

SE Artifact Tool /

Generated
Artifact

Planning Domain

Actions

— "

Flight Rules \
_/‘—\

Goals

/

Test Obligation Coverage Test
Generator Goals

Test Cases

_> Planner l —' (Plan)

~—~

O

04-06-14

—_—y

L

Platform
Test Oracle

FormaliSE - Mike Whalen

Environment

Simulation/

Verification of Plan Execution (PLEXIL)

Environment
PLEXIL
Interpreter H/ Test Oracle /

PLEXIL Plan Tests

PLEXIL Plan

Test Obligation
Generator

Through translation

to Java and use of

Symbolic PathFinder
to generate tests

04-06-14 FormaliSE - Mike Whalen

PLEXIL by Example

SafeDrive: {

Integer pictures = 0; o
EndCondition
Lookup (WheelStuck) || pictures
== 10; *
while (! Lookup(WheelStuck))
Sequence
{
OneMeter: { Drive(l); }
TakePic: { .

StartCondition pictures <
10;
TakePicture();
}
Counter: {
PreCondition pictures < 10; °
pictures = pictures + 1;
}
Print: { print (

"Picturee taken:+" .

Plan consists of nodes

— Arranged in a hierarchy
Node behavior described by a
state machine

— Nodes progress through states
like INACTIVE, WAITING,
EXECUTING, FAILING, FINISHED

Transitions between states are
guarded by conditions, such as
Start, End, Invariant

Basic PLEXIL contains six node
types
Extended PLEXIL contains

syntactic sugar; 4 additional
constructs

PLEXIL semantics

Receive new
input from
external world

Execution: ® ple
, Mmacrostep . macrostep
// \\
Vs AN
7 \
7 AN
7 N
7/ \\
,/ \
o po - ;\
microstep / microstep \
4 \
/ \ Quiescence
/ \ reached,
) Assignment to
. variable, or
atomic Command
° > issued
atomic
*—>
atomic

04-06-14 FormaliSE - Mike Whalen

PLEXIL semantics

WAITING

AncestorExit

-

ExitCondition

m

Ancestor

Invariant

AncestorEnd

SkipCondition

m
le

StartCondition

Execution:

Receive new
input from
external world

° >le
macrostep =~ _

macrostep

LEXECUTING

04-06-1

\ Quiescence
\ reached,
Assignment to
*—>h :
. variable, or
atomic Command
o > issued
atomic
*—>
Set OUTCOME A atomic
to FAILURE Set OUTCOME
Set FAILURE_TYPE to to SKIPPED
PRE_CONDITION_FAILED
[ITERATION_ENDED] FINISHED L
ormaliSE - Mike Whalen 8

Formalizing PLEXIL Semantics

* PLEXIL has formal semantics
— Specified in PVS [Munoz and Pasareanul]
— Specified in Maude [Dowek, Munoz, and Rocha]

* Extensive work on checking formal definitions
— Completeness and determinism [Munoz]
— Atomicity and Termination [Dowek]

* Maude can use semantics to generate a model
checker
— Has been used on small plans

PLEXIL, Java, and SPF

Symbolic PathFinder

Lookup requests and
Commands

Translated Plan in
Java

Symbolic values SymbolicExternalWorld
(also Java)

SymbolicSequencelistener i Test cases

04-06-14 FormaliSE - Mike Whalen

10

Why Translate to Java?

Variety of Java analysis / TCG tools

— Java SPF, jCute, EvoSuite, Randoop

Easy to integrate with environmental models
— These models are already written in Java

— Can do mixed mode concrete/symbolic execution
Provides an execution engine

— Current NASA PLEXIL executive (not our stuff) is an interpreter
— Could retarget translation to C for fast execution
— Optimizations for analysis also improve code performance

Sponsor required it ©
— NASA wants to demonstrate capability in JPF/SPF

Translation approach

SafeDrive: {

Integer pictures = U,
EndCondition class SafeDrive extends ListNode
Lookup (WheelStuck) || {
pictures == 10; private Variable<Integer>
while (! Lookup(WheelStuck)) pictures = new Variable(new
IntegerValue(0));
Sequence
{ }
OneMeter: { Dripg=at(l); }
. class OneMeter extends
TakePic: {

CommandNode { .. }
StartCondition pictures <

10;
PakePicturells class TakePic extends CommandNode
{ .. }
}
Counter: f | | class Counter extends
PreCondition picturas AssignmentNode { .. }
10;

1 = i + H .
pictures = pictures L class Print extends CommandNode

} { ..
Print: { print (}

Why Generate Tests?

We can also do symbolic execution

— Symbolic exploration of paths

— Equivalent to proof if all loops are a-priori bounded
But, in its basic form, it doesn’t scale

— Loops are not bounded in real-time systems

— Many paths generate similar tests.

Test coverage metrics provide search pruning
— Can provide guidance to “interesting” paths
— Makes analysis incomplete

Sponsor required it ©
— NASA wants to demonstrate capability in JPF/SPF

PLEXIL Language Analysis

While analyzing and generating tests, we discovered 2
problems in the PLEXIL language
In Extended PLEXIL:

— “If-Then-Else” construct did not handle the UNKNOWN case
properly, causing the entire node to become unresponsive

In Basic PLEXIL:

— a missing transition caused nodes to execute out of sequence
— Running a test case in the PLEXIL reference executive put the
plan into an unexpected state, causing it to crash

Both issues were sent to the PLEXIL team, who were able
to fix both issues

A Note on Formalization

Plexil has formal semantics
— Specified in PVS [Munoz and Pasareanu]
— Specified in Maude [Dowek, Munoz, and Rochal]

Extensive work on checking formal definitions
— Completeness and determinism [Munoz]
— Atomicity and Termination [Dowek]

Why were these issues not caught?

Formal = correct

Verifying optimizations requires re-examination of
definitions

Testing has benefit of serendipity

Optimizations

Singleton 3-valued logic objects

Constant propagation and removal of impossible transitions
(code specialization)

Dead variable removal

— Each node must store the “start” and “end” time for each of the 7
PLEXIL node states, but these can be eliminated if the value is never
read

Lazy evaluation

— Children of INACTIVE nodes are, by design, also INACTIVE

— The step function for these children can be skipped entirely because it
is guaranteed that the child will simply remain in INACTIVE with no
side effects

Optimizations — UNKNOWN biasing

—>| WA] * The first transition
V depends on the
cestorExt S ancestor’s exit

condition, but only
whether it is “true” or
“not true”

F U

=4

ExitCondition

e Similarly, the ancestor’s
invariant depends on
whether or not it is

/\) false

04-06-14 FormaliSE - Mike Whalen 17

I

Ancestor
Invariant

Optimizations — UNKNOWN biasing

* This biasing can be pushed down into the
leaves of the expression, allowing native Java
Booleans to be used. For example:

— PLEXIL:
* alpha && (beta | | gamma) && !delta == true

— Unoptimized Java:
 alpha.and(beta.or(gamma)).and(delta.not()).isTrue()
— Optimized Java:

 alpha.isTrue() && (beta.isTrue() | | gamma.isTrue()) &&
delta.isFalse()

Experimental Results

* Test case generation performance of:
— The original, naive translator

— The IL-based translator, which also includes:
* 3-valued logic singletons
« UNKNOWN biasing
» Skipping of INACTIVE children
* Dead variable removal

* The plans used were:
— Example PLEXIL plans distributed with PLEXIL

— “Fluid”, which describes part of the ISS and is much
larger

Experimental Results

_
0

Naive time [(0H TO 17:13 19:32

2:32 13:35 5:12 14:11
Naivetests [BUIEE TO 8191 24575

10572 2715 8191 24575

TO: timed out (more than 20 minutes)

04-06-14 FormaliSE - Mike Whalen 20

Experimental Results

Fluid model
SPF Depth 5 10 15

0:55 T0
IL time 0:47 TO
IL* time 0:47 TO
5 28 TO
IL tests 4 22 TO
IL* tests 5 26 TO

TO: timed out (more than 20 minutes)
IL*: IL without code specialization

04-06-14 FormaliSE - Mike Whalen 21

Experimental Results

Unlike the smaller examples, the large Fluid
model takes longer to analyze with the new
architecture

We discovered that code specialization (removal
of impossible transitions) somehow causes test

generation time to increase

Even with specialization disabled, the naive
version outperforms the IL one

We are working with the JPF/SPF team to
diagnose these issues

Current Work: PLEXIL Intermediate
Language

PLEXIL is a rich language
— 6 different node types
— Each have different side effects,
— Each have slightly different state machines

For more extensive optimization, such as rearranging and
combining nodes, need an intermediate language

An IL plan consists of:
— A flat list of all variables
— Aflat list of (universal) state machines, where states and transitions can
also include Actions (perform assignment, issue command, etc.)
States must have a mapping back to PLEXIL’s native states
(INACTIVE, WAITING, etc.) because this information can be used in
expressions

Next steps

e Optimizations (with IL)

— Sequence merging /F \
Parent
EXECUTING?

* Combine parallel nodes used in
seqguence into single state
machine.

<child 1’s StartCondition>

<child 1’s RepeatCondition> <child 1’s EndCondition>

— Path compression
* Combine microsteps when — |eeoommmmm T

Not <child 1's

sequence does not matter. RepeatCo

ild2’s
StartCondition>

<child 2’s
EndCondition>

* Analysis of generated tests,

<child 2’s RepeatCondition

including coverage | = e ———
— What is a meaningful coverage \ /

metric?

* Testing mission code: LADDEE

04-06-14 FormaliSE - Mike Whalen 24

Thank you!

Eepcis Slerci HE
Dty Gradies e “7*
MYEEE

Obrigado!
e

Tesekkurler Y

FormaliSE - Mike Whalen

