
FormaliSE’16

Toward Rigorous Design of
Domain-Specific
Distributed Systems

Mohammed S. Al-Mahfoudh
Ganesh Gopalakrishnan
Ryan Statesman
The University of Utah

Outline
❖ Intro

❖ Nowadays

❖ situation

❖ solutions: difficulties + effectiveness

❖ DS2

❖ offers

❖ example

❖ completion status

❖ Conclusion

Intro
❖ Distributed Systems gone mainstream

❖ Data centers, cloud, IoT,…etc.

❖ Notoriously hard to develop+get right

❖ Reasoning? barely supported

❖ more productivity + less reasoning =>

❖ Worse? no semantic clarity
Image credit: www.scorpionpictureguide.com => cute bug is parallel processing, scorpion DS

http://www.scorpionpictureguide.com

Background

❖ Extreme non-determinism

❖ Common Misconceptions

❖ fast access, single time frame, fault-freedom,
strong-ordering

❖ Sadly, distributed systems violate all these!

❖ Language generality/imprecision

❖ Domain specific knowledge often not exploited

–From Pamela Zave’s Talk

This morning’s lecture, you saw it!
how much effort, time, and dedication it takes

What does it take to specify Distributed Systems

❖ Proving Raft Linearizability in Verdi

❖ 45K of lines in complete proof

❖ 90 non-trivial invariants

❖ 3 man-years to achieve! (2 ppl x 1.5 yrs = 3)

❖ I had a kid + another coming + many things < 3 yrs!

❖ How many LoC actual Raft implementation?
Complete story in [3]

Well Known Issues, Current Approaches

❖ Only good for stable systems

❖ During development needs

❖ exploration (loose ends)

❖ Visualization (improving understanding)

❖ Basic Property Checking (e.g. Linearizability)

❖ Not scalable (previous slide)

❖ Not widely known in mainstream community

Current success stories
DSLs: DeLite, P, P#, …etc (Domain Specific Languages)

❖ Domain implicits exploitation (case specifics handled)

❖ Clear syntax and semantics (concise+familiar)

❖ Highly optimized runnable(s) (Delite)

❖ Multiple backends (heterogeneity handled - Delite)

❖ High level language (Scala - Delite, C#-P#)

❖ No (networked) distributed systems support!

DS2 Infrastructure

Domain Specific Distributed Systems Specification and
Synthesis

DS2 Infrastructure (Provides/Enables)

❖ Actor driven model (easy to understand)

❖ Semantically guided exploration/testing of distributed
systems

❖ Extensibility, Compose-ability and re-use of algorithms

❖ Multiple levels (layers) of (non-)faulty operation

❖ Visualization of schedules/traces (understanding aids)

❖ Ultimately, Synthesis of dependable distributed systems

More advantages

❖ One front-end

❖ All that framework taken care of (for all developers)

❖ No fluctuation: a model/proof vs. implementation

❖ Implementation is its own model

❖ no more separate model/proof activities.

Extra Features
❖ Snapshot/Resume (to rewind, try other schedules)

❖ Full runtime capture

❖ Traces untouched (keeping exploration history)

❖ Tracing Builtin (FULL state capture)

❖ For Scheduler: debugging aid

❖ For Distributed System: Analysis and Visualization

❖ Visualizer/stepper being built!

Limitations

Limitations

❖ Programming-Language specific

❖ Current implementation => specific to Scala

❖ Targeting Akka first (checking + synthesis)

❖ Infrastructure ported

❖ Schedulers ported

❖ front-end(s) re-written

Teaser (What if — one rule takes
care of code)

One rule - rules them all

replicated[main][s1,s2][primary](d).on(3 updates)

One rule - rules them all

replicated[main][s1,s2][primary](d).on(3 updates)

 d = 0 // data item

cd = 0 // count of updates to ’d’

vd = 0 // version ID of ’d’

csd = d.hashCode() // check−sum of ’d’

replicatedOn = {d: [s1,s2],...}

alive−agents = [s1,s2]

One rule - rules them all

replicated[main][s1,s2][primary](d).on(3 updates)

 d = 0 // data item

cd = 0 // count of updates to ’d’

vd = 0 // version ID of ’d’

csd = d.hashCode() // check−sum of ’d’

replicatedOn = {d: [s1,s2],...}

alive−agents = [s1,s2]

cd++; vd++; csd += d.hashCode()

if (cd%3 == 0) {
 m = Message("Replicate", payload = [d, vd]); ds.send(main, m, s1);

 ds.send(main, m, s2)

}

One rule - rules them all

replicated[main][s1,s2][primary](d).on(3 updates)

 d = 0 // data item

cd = 0 // count of updates to ’d’

vd = 0 // version ID of ’d’

csd = d.hashCode() // check−sum of ’d’

replicatedOn = {d: [s1,s2],...}

alive−agents = [s1,s2]

cd++; vd++; csd += d.hashCode()

if (cd%3 == 0) {
 m = Message("Replicate", payload = [d, vd]); ds.send(main, m, s1);

 ds.send(main, m, s2)

}

 // ’d ’ was updated ; recvr needs to catchup

if (m.payload(3) > recvr.vd)
 // just one batch update happened
 if(recMsg.payload(2) − recvr.vd ==3)
 update(recvr.locals , recMsg)
 // > 1 batch update , recvr missed >= 1 update

 else if (recMsg.payload(2) − recvr.vd >3)

 updateElaborated (recvr , recMsg)
 // recvr ahead, let other’s know
 else if (recMsg.payload(2) − recvr.vd < 0)

 { m = Message("Replicate", payload = [d,vd, csd]);

 replicateTo(replicatedOn, m)}
else // more sophisticated fault−tolerance work

somethingIsWrong (m) / / use checksum+others (raft)

Architecture+Lang. Design

Communication Patterns & Events

❖Send (communication)

❖Fire and forget message send

❖Ask (communication+synchronization)

❖Fire and return handle to (optionally) block on later/immediately

❖Handle is a (Future) object.

❖LOCK/UNLOCK (event)

❖model network partition

❖ Primitives differ from parallel programming (list on next slide)

DS2 - Kinds of Events

A set of all agents

M message type

B basic block of code (to execute)

C 2 M⇥A ! K ⇥ B
statement type (plus hidden meta data)

K 2 {none, send, ask, resolve, create, start,
stop, kill, lock, unlock, stop� consume,

resume� consume, become, unbecome, stash,

unstash, unstash� all, get, get� timed,

bootstrap, bootstrap� all,modify � state}

we need ONE model

representing ALL

Process (shared mem.) we need ONE model

representing ALL

Process (shared mem.)

Threads (shared mem.)

we need ONE model

representing ALL

Process (shared mem.)

Threads (shared mem.)

we need ONE model

representing ALL

What more?!
PL’s Mem. Models

Process (shared mem.)

Threads (shared mem.)

Actors
(No Shared

mem. + comm.)

we need ONE model

representing ALL

What more?!
PL’s Mem. Models

Process (shared mem.)

Threads (shared mem.)

MPI Process
(shared mem. + Comm.)

Actors
(No Shared

mem. + comm.)

we need ONE model

representing ALL

What more?!
PL’s Mem. Models

Process (shared mem.)

Threads (shared mem.)

MPI Process
(shared mem. + Comm.)

Event-Driven Threads
(shared mem. + Events)

Actors
(No Shared

mem. + comm.)

we need ONE model

representing ALL

What more?!
PL’s Mem. Models

Process (shared mem.)

Threads (shared mem.)

MPI Process
(shared mem. + Comm.)

Event-Driven Threads
(shared mem. + Events)

Actors
(Some with Shared

mem. + comm.)

Actors
(No Shared

mem. + comm.)

we need ONE model

representing ALL

What more?!
PL’s Mem. Models

Process (shared mem.)

Threads (shared mem.)

MPI Process
(shared mem. + Comm.)

Event-Driven Threads
(shared mem. + Events)

Replicated State Machines

(shared mem. + Events + Transitions)

Actors
(Some with Shared

mem. + comm.)

Actors
(No Shared

mem. + comm.)

we need ONE model

representing ALL

What more?!
PL’s Mem. Models

Process (shared mem.)

Threads (shared mem.)

MPI Process
(shared mem. + Comm.)

Event-Driven Threads
(shared mem. + Events)

Replicated State Machines

(shared mem. + Events + Transitions)

Actors
(Some with Shared

mem. + comm.)

Actors
(No Shared

mem. + comm.)

we need ONE model

representing ALL

What more?!
PL’s Mem. Models

DS2 Architecture-
an Agent

Process (shared mem.)

Threads (shared mem.)

MPI Process
(shared mem. + Comm.)

Event-Driven Threads
(shared mem. + Events)

Replicated State Machines

(shared mem. + Events + Transitions)

Actors
(Some with Shared

mem. + comm.)

Actors
(No Shared

mem. + comm.)

we need ONE model

representing ALL

What more?!
PL’s Mem. Models

DS2 Architecture-
an Agent

A single process model with: Self
contained state, communication,
Behaviors,
other helper functions.
Accommodating all kinds of
processes.

Process (shared mem.)

Threads (shared mem.)

MPI Process
(shared mem. + Comm.)

Event-Driven Threads
(shared mem. + Events)

Replicated State Machines

(shared mem. + Events + Transitions)

Actors
(Some with Shared

mem. + comm.)

Actors
(No Shared

mem. + comm.)

we need ONE model

representing ALL

What more?!
PL’s Mem. Models

DS2 Architecture -
A Strategy on a Context

Scheduler+DistributedSystem
Strategy OO Design Pattern
Scheduler = Strategy
Dist. Sys = Context
Simple, extensible, effective
separation of concerns

DS2 Architecture -
Semantic-aware scheduling

Inter-related entities in a
Strategy OO Design Pattern
Scheduler = Strategy
Dist. Sys = Context
Simple, extensible, effective
separation of concerns

Example driven benefit illustration
(Animated from FMI paper)

High level example
Echo Server-client interaction:

1. Server => started (bootstrapped) => unlocked

2. Client => started => unlocked => send request => waits confirmation

3. Server => process request => sends confirmation

4. Client => is happy

Scenarios:

❖ No bugs schedule (above)

❖ Deadlock 1

❖ Deadlock 2

Example

val ds = new DistributedSystem("Echo-ack")

val s = new Agent("Server")

val c = new Agent("Client")

val act1, act2, act3 = new Action

// Client setup

act1 + Statement(UNLOCK,c) // unlocks the agent incoming q

act1 + Statement(ASK,c,new Message("Show","Hello!"),s, "vn")

act1 + Statement(GET,c,"vn","vn2")

act1 + Statement(println("I'm Happy!"))

c.R("Start") = act1 // (Start, act1) to reactions map

// Server setup

act2 + Statement(UNLOCK, s)

act2 + Statement(println("Greetings!"))

act3 + Statement((m:Message,a:Agent)=>println(m.p))

act3 + Statement((m:Message,a:Agent)=>send(s,m(p =
true),m.s))

s.R("Start") = act2 ; s.R("Show") = act3

ds += Set(s,c) // adding agents to system

ds.attach(BasicScheduler)

Correct Schedule
sch.consume(s) // consume resolving send(..) stmt

 // note GET blocks, then it is resolved

sch.consume(c) // consume "happy" stmt from c-task

sch.executeOne // s print("Hello")

sch.executeOne // c blocks on GET, doesn't progress

 // putting back all stmts after it

 // from cq back to front of task.xq in order

sch.executeOne // resolving send(..), t.q != empty

 // things happen to t.L("vn")-future resolved

 // and then c.q = [RF(f,s=s)], note sender

 // is s, not t

sch.handel(c) // handling the RF message, unblocking c

sch.consume(c) // consuming GET from c again

sch.consume(c) // consuming "happy" stmt from c

sch.executeOne // R-GET c-stmt, won't block (resolved)

 // c.L("vn2") = c.L("vn").val

sch.executeOne // print("I'm happy")

// DONE happy schedule, other schedules are not this happy

val sch = ds.scheduler

sch.boot(s); sch.boot(c) // sends Start msg to s and to c

sch.schedule(s) // schedule start-task from s

sch.schedule(c) // schedule start-task from c

sch.consume(s) // consume UNLOCK stmt from s-task

sch.consume(s) // consume "greeting" stmt from s-task

sch.consume(c) // consume UNLOCK stmt from c-task

sch.consume(c) // consume ASK stmt from c-task

sch.executeOne // UNLOCK s-stmt, IsLocked(s) == false

sch.executeOne // "greeting" s-stmt

sch.executeOne // UNLOCK c-stmt, IsLocked(c) == false

sch.executeOne // ASK s-stmt, T = {t} temporary agent

 // and s.q == [Show("Hello",s=t)]

sch.schedule(s) // schedule "Show" task from s

sch.consume(s) // consume print("Hello") stmt

sch.consume(c) // consume GET stmt from c-task

animated schedule

Initial state (nothing executed)

To Execute:

sch.boot(s)

sch.boot(c)

animated schedule

Executed:

sch.boot(s)

sch.boot(c)

To Execute:

sch.schedule(s)

sch.schedule(c)

animated schedule
Executed:

sch.schedule(s)

sch.schedule(c)

To Execute:

sch.consume(s)

sch.consume(s)

sch.consume(c)

sch.consume(c)

animated schedule
Executed:

sch.consume(s)

sch.consume(s)

sch.consume(c)

sch.consume(c)

To Execute:

sch.executeOne

sch.executeOne

sch.executeOne

animated schedule

Executed:

sch.executeOne

sch.executeOne

sch.executeOne

To Execute:

sch.executeOne // ask stmt

animated schedule

Executed:

sch.executeOne

sch.executeOne

sch.executeOne

To Execute:

sch.executeOne // ask stmt

animated schedule
Executed:

sch.executeOne // ask stmt

To Execute:

sch.schedule(s) // "Show" task

sch.consume(s) // print("Hello")

sch.consume(c) // consume GET

sch.consume(s) // consume r-send

// note GET blocks, then it is resolved

sch.consume(c) // consume "happy"

After some time …

animated schedule

Executed:

sch.executeOne // r-send(..)

To Execute:

sch.handel(c) // RF

animated schedule

Executed:

sch.handel(c) // RF

To Execute:

sch.consume(c) // GET

sch.consume(c) // "happy" stmt

animated schedule

Executed:

sch.consume(c) // GET

sch.consume(c) // "happy" stmt

To Execute:

sch.executeOne // R-GET

animated schedule

Executed:

sch.executeOne // R-GET

To Execute:

sch.executeOne //"I'm happy"

animated schedule

Executed:

sch.executeOne //"I'm happy"

To Execute:

What could have gone wrong?

May Go Wrong

❖ Client could have blocked first

❖ Before server resolves: it crashes => deadlock

❖ After server resolves: RF dropped => deadlock

❖ Messages in Agent’s queue are still in-flight

❖ Till they are handled/stashed, then delivered

❖ Both avoidable by timed-get on future.

Deadlock1 Schedule (dropped
resolve future msg)

About to drop a message!

Executed:

sch.executeOne // r-send(..)

To Execute:

sch.handel(c) // RF

RF message dropped!

Executed:

simulated-RF-msg-drop

To Execute:

Deadlock2 Schedule (crashed
server before resolve)

Client is blocked

Executed:

sch.executeOne // c blocks

To Execute:

sch.executeOne // r-send(..)

Server about to resolve but…

Executed:

sch.executeOne // c blocks

To Execute:

sch.executeOne // r-send(..)

Server crashed before resolve …

Executed:

simalted-crash

server-came-back (empty hand)

To Execute:

That simple example taught us:
“more erroneous interleaving

than correct ones!”

Completion Status

Implementation/Completion Status

completednot started partial completion / in progressstarted

DS2 Lang. Spec.

DS2 model (shown here)

Chord, Zab, Multi-Paxos, Raft

Tracing

Basic Scheduler

Akka front-end

Snapshot/Resume Linearizability Sch.

DS2 Lang. impl.

Synthesis

Visualization

Conclusion

Conclusion
❖ Motivated the need for an integrated solution

❖ Presented our model

❖ How it solves the issues stated

❖ Walk through example(s)

❖ Sneak peak towards synthesis

❖ Future work: Formal Operational Semantics (under
review), Tool for Akka (with multiple alg.), Synthesis of
Akka from DS2.

References

[1] ”Toward Rigorous Design of Domain-Specific Distributed Systems”, Mohammed S.
Al-Mahfoudh, Ganesh Gopalakrishnan, Ryan Stutsman.

[2] http://formalverification.cs.utah.edu/ds2/

[3] ”Planning for Change in a Formal Verification of the Raft Consensus Protocol”,
Doug Woos, Zachary Tatlock, James R. Wilcox, Michael D. Ernst, Steve Anton, Thomas
Anderson.

Q/A

Thank you!

Removed frames follow

animated schedule

Executed:

sch.schedule(s) // "Show" task

sch.consume(s) // print("Hello")

sch.consume(c) // consume GET

sch.consume(s) // consume r-
send

sch.consume(c) // "happy"

To Execute:

sch.executeOne // s print("Hello")

animated schedule

Executed:

sch.executeOne // print("Hello")

To Execute:

sch.executeOne // c blocks

animated schedule

Executed:

sch.executeOne // c blocks

To Execute:

sch.executeOne // r-send(..)

animated schedule

Executed:

sch.executeOne // c blocks

To Execute:

sch.executeOne // r-send(..)

animated schedule

Executed:

sch.executeOne // c blocks

To Execute:

sch.executeOne // r-send(..)

animated schedule

Executed:

sch.executeOne // c blocks

To Execute:

sch.executeOne // r-send(..)

