

Deductive Evaluation: Formal Code Analysis with Low User Burden

Ben Di Vito
NASA Langley Research Center
Hampton, Virginia USA
15 May 2016

Landscape

- Formal code verification is enjoying a resurgence
 - Improved deduction (SMT solvers, primarily)
 - Recent tools: Frama-C, VCC, SPARK Pro (Ada)
- BUT:
 - Industry strongly prefers push-button methods
 - Code verifiers require effort
 - Will software engineers use them?

- · Meanwhile, static analysis is fully automated
 - Many software developers have embraced them
 - But they only check well-formedness

Opportunities

- Can we automatically deduce functionality?
 - Yes! Discover, derive, infer code's execution behavior
 - Forgo traditional verification results
 - Challenge: Iteration is hard
- Our method analyzes code having loops
 - Adaptation of classical Floyd-Hoare verification methods
 - Loop invariant synthesis using iteration schemes
 - Annotation-free deductive evaluation of C functions
 - More complete form of symbolic evaluation/execution
 - Mechanized using PVS (Prototype Verification System)
 - Best-effort analysis; no guarantee of coverage

Opportunities (cont'd)

- Data-driven approach relies on a division of labor
 - Human assistance to create iteration scheme library
 - Full automation when applying them during evaluation
- Ease of use is a major goal
 - Encourages uptake by software engineers
 - Provides rigorous feedback on user's code
 - Augments existing tools and practices
- Filling a gap, finding a niche:

Example of Deductive Evaluation

C function:

```
int add mult(
    unsigned int m,
    int n)
  int p = 0;
  unsigned int i = 0;
  while (i < m) {
   p += n;
    i++;
  return p;
```

Evaluation result (PVS):

```
add mult deval
 [(IMPORTING
  iter schemes@prog types)
  m 0 : nat,
  n 0 : int] : THEORY
BEGIN
  final: return values =
    (# result :=
         m \ 0 \ * \ n \ 0 \ \#)
  WFO: boolean = TRUE
END add mult deval
```


Example (cont'd)

```
IMPORTING iter schemes@top
                                         % Invariants for loop index i
p \ 0 : int = 0
                                         % (scheme loop index recur):
i \ 0 : nat = 0
                                             (index var expr \cdot i 1 = k 1 )
result 0 : int
                                           (iter k expr \cdot k 1 = i 1)
return values: TYPE =
                                           (initial bound . TRUE)
                                            (final bound \cdot i 1 < 1 + m 0 )
  [# result : int #]
% Analyzing while loop at depth 1.
                                         % Invariants for variable p
% Found dynamic variables: p, i
                                         % (scheme arith series recur):
% Found static variables: m, n
                                         p 1 = (k 1 * n 0)
% Found possible index variables: i
                                         % Values of dynamic variables on
% Values at top of loop:
                                         % (normal) loop exit:
k 1 : nat % implicit loop index
                                         k 2 : nat = m 0
p 1 : int % dynamic variable
                                        i \ 3 : nat = m \ 0
i 1 : nat % dynamic variable
                                        p 3 : int = m 0 * n 0
% Effects of loop body:
                                         % End of for/while loop at depth 1.
p 2 : int = p 1 + n 0
i \ 2 : nat = i \ 1 + 1
```

NASA

Features of PVS

- PVS (by SRI International) is both a language and a suite of deduction tools
 - Classical higher order logic with typing
 - Powerful interactive theorem prover
 - Prover also can be invoked programmatically
 - Tools hosted within the Emacs editor
- Relevant language features
 - Declarations grouped into parameterized theories
 - Predicate subtypes are crucial: { x : T | P(x) }
 - Function types are versatile; used to model arrays: [below(n) -> int]
- Uninterpreted constants model program values
 - Example: n_1 : {n: int | 0 <= n AND n < q}

C Features Supported

- Current fragment of C is modest
 - Types int, unsigned int and arrays of int
 - Function declarations and most statements
 - Function parameter mechanism
- Limitations and unsupported features
 - Integer types are unbounded
 - No side effects in expressions
 - No parameter aliasing (e.g., overlapping arrays)
 - No pointers (yet)
 - No declarations other than functions

Prototype Tool Chain

Evaluator, Synthesizer: Common Lisp

AST Translator: Python

C Parser: Open-source tool (Python)

Emacs Interface: Emacs Lisp

Invariant Concepts

- Non-iterative code segments can be analyzed via:
 - Predicate transformation
 - Proof rules from a program logic (e.g., Hoare logic)
 - Symbolic evaluation/execution
- Invariants are needed to capture loop behavior
 - In verification tools, normally provided by users
 - Generally considered a tedious, error-prone activity
- Typical proof rule for while-loop:
 - Given: $P \rightarrow Q \land \{B \land Q\} S \{Q\} \land Q \rightarrow (R \lor B)$
 - Infer: {P} while B do S {R}
- Derivation of invariants is undecidable in general
 - Use tractable domains, heuristics or predefined schemes

10

Analysis Approach

- Invariant synthesis based on recurrence relations
 - Generalized for predicates
 - Iteration schemes expressed as PVS theories
 - Templates and patterns derived from theories
 - Applied during analysis using matching and proving
- Deductive evaluation of C code
 - Based on Floyd-Hoare verification concepts
 - No verification conditions
 - Instead, perform on-the-fly analysis and proof
 - Predicate subtypes play a key role
 - Iteration schemes are searched, invariants are derived
 - Fully automatic, strongest-postcondition analysis

Predicate Recurrence Relations

- Schemes formalize generalized recurrence relations
 - Recurrence: I(u,0): u = 1; R(u,v,k): v = 2*u
 - Solution: P(u,k): $u = 2^k$
 - Prove: $I(u,0) \rightarrow P(u,0)$; $P(u,k) \land R(u,v,k) \rightarrow P(v,k+1)$
 - Enables solutions to be Boolean expressions
- PVS formulation uses structured predicate definition
 - Labeled conditions and solution components
 - Implicit loop index k used in every scheme
 - Optional declaration for auxiliary facts
 - Inductive proof that solution satisfies recurrence
 - Meta-model expressed in separate theories

Example Scheme 1

```
arith series recur : THEORY
 BEGIN
 dyn vars: TYPE = int
 stat_vars: TYPE = int
 IMPORTING recur pred defn[dyn vars, stat vars]
 k: VAR nat
 I,U,V: VAR dyn vars
 S,W: VAR stat vars
 recur type: recurrence type = var function
 recurrence(I, S)(U, V, k): recur cond = ...
 solution(I, S)(U, k): invar list = . . .
 recur satis: LEMMA sat recur rel(solution, recurrence)
 END arith series recur
```


Example Scheme 1 (cont'd)

```
arith series recur : THEORY
  recurrence(I, S)(U, V, k): recur cond =
      LET s0 = I, d = S, u = U, v = V IN
        (\# each := (: (iter effect, v = u + d) :),
           once := (: :)
         #)
  solution(I, S)(U, k): invar list =
      LET s0 = I, d = S, u = U IN
        (: (func val expr, u = k * d + s0),
           (initial bound,
            IF d < 0 THEN u \le s0 ELSE u > s0 ENDIF)
         :)
  END arith series recur
```


Example Scheme 2

```
loop index recur : THEORY
 dyn vars: TYPE = int
 stat vars: TYPE = [nzint, int, real rel]
 recurrence(I, S)(U, V, k): recur cond =
     LET i0 = I, (d, n, R) = S, i = U, v = V IN
        (# each := (: (iter effect, v = i + d),
                      (while cond, R(i, n)):),
          once := (: (dyn_init, R(i0, n + d)),
                      (stat cond,
                      R = reals. < OR R = reals. >) :)
        #)
 END loop_index_recur
```


Example Scheme 2 (cont'd)

```
solution(I, S)(U, k): invar list =
   LET i0 = I, (d, n, R) = S, i = U IN
        (: (index var expr,
            i = id(LAMBDA (k: nat): k * d + i0)(k)),
           (iter k expr,
            k = id(LAMBDA (i: int): (i - i0) / d)(i)),
           (initial bound,
            IF d < 0 THEN i \le i0 ELSE i0 \le i ENDIF),
           (final bound,
            R(i0, n + d) IMPLIES R(i, n + d)):)
facts(I, S)(U, k): aux fact list =
   LET i0 = I, (d, n, R) = S, i = U IN
        (: (final index value,
            R(0, d) AND NOT R(i, n) IMPLIES
              i = n + mod(i0 - n, d),
           (final k value,
            R(0, d) AND NOT R(i, n) IMPLIES
              k = ceiling((n - i0) / d)) :)
```


Evaluator Operation

- Deductive evaluator accepts C in intermediate form
 - ASTs rendered as Lisp s-expressions
- Evaluator processes C statements within a function
 - Process is similar to symbolic execution
 - Handles extra paths due to {if, return, break} statements
 - PVS theory built incrementally during evaluation
 - PVS constants model C variables at change points
 - Predicate subtypes used to express constraints
- Loop handler finds invariants for dynamic variables
 - Iteration schemes searched
 - Matching applied to effects of loop body
 - Prover checks conditions and performs simplification
 - Final variable values at end of loop are derived
 - Schemes can depend on invariants found earlier

Evaluation Example 2

C function:

```
int add mult exp(
  unsigned int m, int n) {
  int p = 0;
  unsigned int d = m;
  int y = n;
 while (d > 0) {
    if (d % 2 == 1)
       p += y;
   y += y;
   d /= 2;
  return p;
```

Evaluation result (PVS):

```
% Invariants for variable d
% (scheme div2 exp2_recur):
% d 1 =
     floor((m 0 / (2 ^ k 1 )))
% Invariants for variable y
% (scheme double exp2 recur):
y 1 = (n 0 * (2 ^ k 1))
% Invariants for variable p
% (scheme exp2 mult recur):
  p 1 = m 0 * n_0 -
     floor((m 0 / (2 ^ k 1 )))
       * (2 ^ k 1 ) * n 0
```


Array Handling

- Array indexing leads to well-formedness concerns
 - Ensure that index expressions are within bounds
 - Two declaration cases in C: (1) int A[N] and (2) int A[]
 - For (1), check that i < N (well-formedness condition, WFC)
 - For (2), add an implicit size parameter, then generate a well-formedness obligation (WFO) to ensure i < size
- Invariants help constrain array accesses within loops
 - When i < n for all iterations, can generate WFO: n <= size</p>
 - Special schemes are provided to establish the bounds
 - WFOs must be enforced in the calling environment

Evaluation Example 3

C function:

```
void array_init(
        int A[],
        unsigned int n,
        int v)
{
    unsigned int i;
    for (i=0; i<n; i++)
        A[i] = v;
}</pre>
```

Evaluation result (PVS):

```
array init deval
 [(IMPORTING
  iter schemes@prog types)
 A size: posnat,
 A 0_:int_array(A_size_),
 n 0 : nat, v 0 : int ] : THEORY
BEGIN
  val A: {r : int array(A size )
          FORALL (q: below(n 0 )):
            r(q) = v 0 }
  final: return values =
    (# A := val A #)
  WFO: boolean = n_0 <= A_size_
END array init deval
```


Conditional Loop Exits

- Loops can be exited via return and break statements
 - Give rise to additional exit paths
- In some contexts, loop exits can induce invariants
 - When exit condition is P, can often infer "not P" holds at the top of every iteration
 - One sufficient condition is that the loop index is the only dynamic variable P references
 - Allows us to conclude the following:
 - FORALL (j: below(k)): NOT P(j)
 - An iteration scheme is provided to handle this case

Evaluation Example 4

C function:

```
int linear search(
      const int A[],
      unsigned int n,
      int v) {
  int i = 0;
 while (i < n) {
    if (A[i] == v)
       return i;
    i += 1:
  return -1;
```

Evaluation result (PVS):

```
linear search deval
 [(IMPORTING iter schemes@prog types)
 A size : posnat,
 A 0 : int array(A size),
  n 0 : nat, v 0 : int] : THEORY
BEGIN
 val result : {r : int |
    (((r = -(1))) AND
      (FORALL (j: below(n 0 )):
         NOT A 0 (j) = v 0) OR
     (A \ 0 \ (r) = v \ 0 \quad AND
       (r < n \ 0) \ AND \ (0 <= r_) \ AND
        (FORALL (j: below(r)):
           NOT A 0 (\dot{j}) = v 0 )))}
 final: return values =
   (# result := val result #)
 WFO: boolean = n 0 <= A size
END linear search deval
```


Nested Loops

- Inner loop completed first
 - Outer loop evaluation encounters inner loop on main path within body
 - Inner loop is processed independently, resulting in derived effects
 - Those effects used to match a scheme for outer loop
 - Inferred invariants for outer loop reflect combined behavior

C function:

```
void bubble sort(
    int A[],
    unsigned int nm1) {
  unsigned int i, j;
  int t;
  for (i=0; i<nm1; i++) {
    for (j=i+1; j<1+nm1;
         j++) {
      if (A[j] < A[i]) {
        t = A[i];
        A[i] = A[j];
        A[j] = t; 
      } } }
```


Evaluation Example 5

Evaluation result (PVS):

```
bubble sort deval
  [(IMPORTING iter schemes@prog types)
  A size : posnat,
                                              val A:
  A 0 : int array(A size),
                                               {r : int array(A size ) |
  nm1 0 : nat] : THEORY
                                                ((FORALL (p: below(nm1 0 )):
                                                   (r (p) \le r (1 + p))) AND
BEGIN
                                                 permutation of?(r , A 0 ))}
 A 6:
   {A: int array(A size )
                                              final: return values =
                                                (# A := val A #)
       (FORALL
        (p: below((nm1 0 - i 1 ))):
         (A(i 1) \le A(1 + p + i 1)))
                                              WFO: boolean =
      AND permutation of?(A, A 1)
                                                   1 + nm1 0 \le A size
      AND
                                            END bubble sort deval
        (FORALL (p: below(A size )):
          ((p < i 1) OR (nm1 0 < p))
          IMPLIES A(p) = A 1 (p)}
```


Inferring End-to-End Behavior

Example: Lossless data compression

- Try to evaluate decompress in context
- Two possible techniques:
 - Expand the function decompress in-line and evaluate
 - Set the type of formal parameter B in decompress to match constraint produced by evaluation of compress
- Expected inference is that C = A

NASA

Limitations

Current prototype

- Subset of C supported; no other languages yet
- Small scale, slow performance
- Matching is syntactic; canonical forms help
- Too many TCCs (type correctness conditions) spawned
- Need multi-pass evaluation for full treatment
- NASA PVS libraries can help

Overall method

- Could support verification tools; not addressed yet
- Synthesize PVS functions to mitigate code complexity
- Need to populate iteration scheme library (> 1K?)
- Large scheme library is a design challenge for tools

Potential Uses, Outlook

Usage possibilities

- Development aid, symbolic debugging
- Complement to unit testing
- Reverse engineering of source code
- Analyzer for component libraries, specialized software domains
- Synthesis of invariants for verifiers and other tools

Future outlook

- Promising, but much work lies ahead
- Could benefit from:
 - Tighter PVS integration
 - Data mining to help create iteration schemes
 - Use of SMT solvers and computer algebra systems
 - Integration with IDEs
- Concepts should be portable to other theorem provers

Questions?

Ben Di Vito NASA Langley Research Center Hampton, Virginia 23681 USA

b.divito@nasa.gov

+1-757-864-4883