Deductive Evaluation: Formal Code
Analysis with Low User Burden

Ben Di Vito
NASA Langley Research Center
Hampton, Virginia USA
15 May 2016

FormaliSE 2016, May 15

@ Landscape

* Formal code verification is enjoying a resurgence
— Improved deduction (SMT solvers, primarily)
— Recent tools: Frama-C, VCC, SPARK Pro (Ada)

* BUT:

— Industry strongly prefers
push-button methods

— Code verifiers require effort

— Will software engineers use
them?

* Meanwhile, static analysis is fully automated
— Many software developers have embraced them

— But they only check well-formedness

@ Opportunities

 Can we automatically deduce functionality?
— Yes! Discover, derive, infer code’s execution behavior

— Forgo traditional verification results
— Challenge: Iteration is hard

 Our method analyzes code having loops
— Adaptation of classical Floyd-Hoare verification methods
— Loop invariant synthesis using iteration schemes
— Annotation-free deductive evaluation of C functions
— More complete form of symbolic evaluation/execution
— Mechanized using PVS (Prototype Verification System)
— Best-effort analysis; no guarantee of coverage

FormaliSE 2016, May 15

@ Opportunities (cont’d)

e Data-driven approach relies on a division of labor
— Human assistance to create iteration scheme library
— Full automation when applying them during evaluation
* Ease of use is a major goal

— Encourages uptake by software engineers
— Provides rigorous feedback on user’s code
— Augments existing tools and practices

* Filling a gap, finding a niche:

SA Al DE MC PV TP Custom

Lightweight Heavyweight

@ Example of Deductive Evaluation

C function: Evaluation result (PVS):
int add mult(add mult deval
unsigned int m, [(IMPORTING
int n) iter schemes@prog types)
{ m 0 : nat,
int p = 0; n 0 : int] : THEORY
unsigned int i = 0; BEGIN
while (i < m) { .« e .
p += n; final: return values =
it++; (# result :=
} mO0 *n 0 #)
return p; WFO: boolean = TRUE

} END add mult deval

FormaliSE 2016, May 15

&

IMPORTING iter schemes@top

p 0 : int = 0

i 0 : nat =0

result 0 : int

return values: TYPE =
[# result : int #]

oo

Analyzing while loop at depth 1.

oo

Found dynamic variables: p, 1

oo

Found static variables: m, n

ov

Found possible index variables:

% Values at top of loop:

k 1 : nat % implicit loop index
p 1 : int % dynamic variable
i 1 : nat % dynamic variable

% Effects of loop body:
p2 :int =p 1l + n 0
i 2 :nat =11 +1

FormaliSE 2016, May 15

i

Example (cont’d)

oo

Invariants for loop index i

oo

(scheme loop index recur):

% (index_var_ expr il =k.1)
3 (iter_k expr k1 =1i1))
% (initial bound TRUE)

o©

(final bound il <1+ m0)

oo

Invariants for variable p

oo

(scheme arith series recur):
pl = (k1 *n0)

oo

oo

Values of dynamic variables on

oo

(normal) loop exit:
2 : nat = m 0_

nat = m 0

(RN

3 _:
3 int = m 0 * n 0

% End of for/while loop at depth 1.

@ Features of PVS

* PVS (by SRI International) is both a language and a
suite of deduction tools

— Classical higher order logic with typing

— Powerful interactive theorem prover

— Prover also can be invoked programmatically
— Tools hosted within the Emacs editor

* Relevant language features
— Declarations grouped into parameterized theories
— Predicate subtypes are crucial: {x:T | P(x) }
— Function types are versatile; used to model arrays:
[below(n) -> int]
* Uninterpreted constants model program values
— Example: n_1 :{n:int | 0<=n AND n<q}

@ C Features Supported

* Current fragment of Cis modest
— Types int, unsigned int and arrays of int
— Function declarations and most statements
— Function parameter mechanism

* Limitations and unsupported features
— Integer types are unbounded
— No side effects in expressions
— No parameter aliasing (e.g., overlapping arrays)
— No pointers (yet)
— No declarations other than functions

FormaliSE 2016, May 15

@ Prototype Tool Chain

Code
C Parser Deductive Invariant
""""""" ' Evaluator Synthesizer
AST Translator Y
Evaluation) - PVS Environment lteration
Results J Theorem Prover Schemes
PVS Theories PVS Thecries

Evaluator, Synthesizer: Common Lisp
AST Translator: Python

C Parser: Open-source tool (Python)
Emacs Interface: Emacs Lisp

FormaliSE 2016, May 15 9

@ Invariant Concepts

* Non-iterative code segments can be analyzed via:
— Predicate transformation
— Proof rules from a program logic (e.g., Hoare logic)
— Symbolic evaluation/execution

* Invariants are needed to capture loop behavior
— In verification tools, normally provided by users
— Generally considered a tedious, error-prone activity
* Typical proof rule for while-loop:
— Given: P->QA{BAQIS{Q}AQ->(RV B)
— Infer: {P} while B do S {R}
e Derivation of invariants is undecidable in general
— Use tractable domains, heuristics or predefined schemes

@ Analysis Approach

* Invariant synthesis based on recurrence relations
— Generalized for predicates
— |teration schemes expressed as PVS theories
— Templates and patterns derived from theories
— Applied during analysis using matching and proving
* Deductive evaluation of C code
— Based on Floyd-Hoare verification concepts
— No verification conditions
— Instead, perform on-the-fly analysis and proof
— Predicate subtypes play a key role
— Iteration schemes are searched, invariants are derived
— Fully automatic, strongest-postcondition analysis

@ Predicate Recurrence Relations

 Schemes formalize generalized recurrence relations
— Recurrence: I(u,0):u=1; R(u,v,k): v=2*u
— Solution: P(u,k): u =22k
— Prove: I(u,0) -> P(u,0); P(u,k) A R(u,v,k) -> P(v,k+1)
— Enables solutions to be Boolean expressions
e PVS formulation uses structured predicate definition
— Labeled conditions and solution components
— Implicit loop index k used in every scheme
— Optional declaration for auxiliary facts
— Inductive proof that solution satisfies recurrence
— Meta-model expressed in separate theories

@/ Example Scheme 1

arith series recur : THEORY
BEGIN
dyn vars: TYPE = int
stat vars: TYPE = int
IMPORTING recur pred defn[dyn vars, stat vars]

k: VAR nat
1,U0,V: VAR dyn_ vars
S,We VAR stat vars

recur type: recurrence type = var function

recurrence(I, S)(U, V, k): recur cond = . . .

solution(I, S)(U, k): invar list = . . .
recur satis: LEMMA sat recur rel(solution, recurrence)

END arith series recur

FormaliSE 2016, May 15 13

@/ Example Scheme 1 (cont’d)

arith series recur : THEORY
recurrence(I, S)(U, V, k): recur cond =
LET sO = I, d=S, u=1U, v =V IN

(# each := (: (iter_effect, v =u +d) :),

solution(I, S)(U, k): invar list =
LET sO = I, d=S, u=70U IN
(¢ (func val expr, u =k * d + s0),
(initial bound,

IF d < 0 THEN u <= s0 ELSE u >= s0 ENDIF)

L X]
S

END arith series recur

FormaliSE 2016, May 15

14

@/ Example Scheme 2

loop index recur : THEORY
dyn vars: TYPE = int
stat vars: TYPE = [nzint, int, real rel]

recurrence(I, S)(U, V, k): recur cond =

LET i0 = I, (d, n, R) =S, i =U, v = V IN
(# each := (: (iter effect, v =1 + d),
(while cond, R(i, n))),

once := (: (dyn init, R(i0, n + d)),

(stat cond,
R = reals.< OR R = reals.>) :)
#)

END loop index recur

FormaliSE 2016, May 15

@ Example Scheme 2 (cont’d)

solution(I, S)(U, k): invar list =
LET i0 = I, (d, n, R) = S, i = U IN
(¢ (index var_ expr,
i = id(LAMBDA (k: nat): k * d + i0)(k)),
(iter k expr,
k = id(LAMBDA (i: int): (i - i0) / d)(i)),
(initial bound,
IF d < 0 THEN i <= i0 ELSE i0 <= i ENDIF),
(final bound,
R(i0, n + d) IMPLIES R(i, n + d)) :)

facts(I, S)(U, k): aux fact list
LET i0 = I, (d, n, R) =S, i = U IN
(¢ (final index value,
R(0, d) AND NOT R(i, n) IMPLIES
i=n+ mod(i0 - n, d)),
(final k value,
R(0, d) AND NOT R(i, n) IMPLIES

k = ceiling((n - 10) / d)) =)
FormaliSE 2016, May 15 16

@ Evaluator Operation

* Deductive evaluator accepts C in intermediate form
— ASTs rendered as Lisp s-expressions

e Evaluator processes C statements within a function
— Process is similar to symbolic execution
— Handles extra paths due to {if, return, break} statements
— PVS theory built incrementally during evaluation
— PVS constants model C variables at change points
— Predicate subtypes used to express constraints

* Loop handler finds invariants for dynamic variables
— Iteration schemes searched
— Matching applied to effects of loop body
— Prover checks conditions and performs simplification
— Final variable values at end of loop are derived
— Schemes can depend on invariants found earlier

&

C function:

int add mult exp(

unsigned int m, int n) {

int p = 0;
unsigned int d = m;
int y = n;
while (d > 0) {

if (d %

0 K
~ +
n
N K

return p;

}

FormaliSE 2016, May 15

o0 o° o° o0 o0 o0 o°

o0 o0 o9 o0 oo

Evaluation Example 2

Evaluation result (PVS):

Invariants for variable d
(scheme div2 exp2 recur):
d1l =
floor((m 0/ (2 " k_1)))

Invariants for variable y
(scheme double exp2 recur):
y1l =(no * (2"k1))

Invariants for variable p
(scheme exp2 mult recur):
pl =m0 *no0 -
floor((m 0/ (2 ~ k_1)))
* (2 7k 1) *n 0

18

@/ Array Handling

* Array indexing leads to well-formedness concerns
— Ensure that index expressions are within bounds
— Two declaration cases in C: (1) int A[N] and (2) int A[]
— For (1), check that i < N (well-formedness condition, WFC)

— For (2), add an implicit size parameter, then generate a
well-formedness obligation (WFO) to ensure i < size

* |nvariants help constrain array accesses within loops
— When i < n for all iterations, can generate WFO: n <= size
— Special schemes are provided to establish the bounds
— WEFOs must be enforced in the calling environment

@ Evaluation Example 3

C function:

void array init(
int A[],
unsigned int n,

int v)
unsigned int 1i;

for (i1i=0; i<n; i++)

A[1] = v;

FormaliSE 2016, May 15

Evaluation result (PVS):

array init deval

[(IMPORTING

iter schemes@prog types)

A size : posnat,

A 0 :int array(A_size),

n 0 : nat, v.0 : int] : THEORY
BEGIN

val A: {r : int array(A size) |
FORALL (g: below(n 0)):
r (q) = v_0_}
final: return values =
(# A := val A #)
WFO: boolean = n 0 <= A size
END array init deval

20

@ Conditional Loop Exits

* Loops can be exited via return and break statements
— Give rise to additional exit paths

* |In some contexts, loop exits can induce invariants

— When exit condition is P, can often infer “not P” holds at
the top of every iteration

— One sufficient condition is that the loop index is the only
dynamic variable P references

— Allows us to conclude the following:
— FORALL (j: below(k)): NOT P(j)
— An iteration scheme is provided to handle this case

&

C function:

int linear search(
const int A[],
unsigned int n,
int v) {
int i = 0;
while (1 < n) {
if (A[i] == v)
return 1i;
i += 1;
}

return -1;

FormaliSE 2016, May 15

Evaluation Example 4

Evaluation result (PVS):

linear search deval
[(IMPORTING iter schemes@prog types)
A size : posnat,

A 0 : int array(A_size),
n 0 : nat, v._0_: int] : THEORY
BEGIN
val result : {r_: int |
(((r_ = —=(1)) AND
(FORALL (Jj: below(n 0)):
NOT A 0 (j) = v.0_)) OR
(A0 (r) =v 0 _ AND

(r <n 0) AND (0 <= r) AND
(FORALL (j: below(r)):
v

NOT A_0_(Jj) = v_0_)))}
final: return values =
(# result := val result #)

WFO: boolean = n 0 <= A size_
END linear_ search deval

22

&

Nested Loops

* Inner loop completed first C function:
— Outer loop evaluation
encounters inner loop on void bubble sort(
int A[],

main path within body

— Inner loop is processed
independently, resulting in
derived effects

— Those effects used to match
a scheme for outer loop

— Inferred invariants for outer
loop reflect combined
behavior

FormaliSE 2016, May 15

unsigned int nml) {

unsigned int i, 3Jj;
int t;
for (i=0; i<nml; i++) {

for (j=i+1l; j<l+nml;
Jt+) {
if (A[J] < A[1i]) |
t = A[1];
A[i] = A[J];
A[J] = t; }
Py}

23

&

Evaluation result (PVS):

bubble sort deval

[(IMPORTING iter schemes@prog types)
A size : posnat,

A 0 : int array(A _size),
nml 0 : nat] THEORY
BEGIN
A 6 :

{A: int array(A size) |
(FORALL
(p: below((nml 0 - 11))):
(A(i 1) <=A(l +p+i1l1)))
AND permutation of?(A, A 1)
AND
(FORALL (p: below(A size)):
((p <11) OR (nml 0 < p))
IMPLIES A(p) = A 1 (p))}

FormaliSE 2016, May 15

Evaluation Example 5

val A:
{r : int array(A size) |
((FORALL (p: below(nml 0)):

(r_(p) <= r_(1 + p))) AND
permutation of?(r , A 0))}

final: return values =

(# A := val A #)

WFO: boolean =

1 + nml 0 <= A size

END bubble sort deval

24

@/ Inferring End-to-End Behavior

 Example: Lossless data compression

void data comp(const int A[1000],
unsigned int n, int C[1000]) {
int B[1000];
unsigned int m;
m = compress(n, A, B); /* B's format derived */

decompress(m, B, C); }

* Try to evaluate decompress in context

 Two possible techniques:
— Expand the function decompress in-line and evaluate

— Set the type of formal parameter B in decompress to match
constraint produced by evaluation of compress

* Expected inference isthat C=A

FormaliSE 2016, May 15 25

@/ Limitations

* Current prototype
— Subset of C supported; no other languages yet

— Small scale, slow performance

— Matching is syntactic; canonical forms help

— Too many TCCs (type correctness conditions) spawned
— Need multi-pass evaluation for full treatment

— NASA PVS libraries can help

* Overall method
— Could support verification tools; not addressed yet
— Synthesize PVS functions to mitigate code complexity
— Need to populate iteration scheme library (> 1K ?)
— Large scheme library is a design challenge for tools

@ Potential Uses, Outlook

e Usage possibilities
— Development aid, symbolic debugging
— Complement to unit testing
— Reverse engineering of source code
— Analyzer for component libraries, specialized software domains
— Synthesis of invariants for verifiers and other tools

 Future outlook

— Promising, but much work lies ahead

— Could benefit from:
* Tighter PVS integration
e Data mining to help create iteration schemes
e Use of SMT solvers and computer algebra systems
* Integration with IDEs
— Concepts should be portable to other theorem provers

FormaliSE 2016, May 15 27

FormaliSE 2016, May 15

Questions?

Ben Di Vito
NASA Langley Research Center
Hampton, Virginia 23681 USA

b.divito@nasa.gov
+1-757-864-4883

28

