Undertaking the Tokeneer Challenge in Event-B

Victor Rivera, Sukiriti Bhattacharya, and Nestor Catano

Innopolis University
Technologies and Software Development Institute
Software Engineering Lab.

May 15", Austin, TX, USA —
FormaliSE 2016 a4
anNiversi Y

The Tokeneer Project

The Tokeneer project

The Tokeneer ID Station (TIS) is responsible for reading a smart
card (Token) and, based on a number of protocols and checks,
ensuring that any person trying to access the enclave is indeed
permitted to enter the enclave, and giving the corresponding
grants as a user or administrator.

Secure Enclave

Enrolment
Station

ID Station
Certificate (TIS)
Authority

(CA)

Workstation

!

Fingerprint
Reader Display Reader

Cam‘

The Tokeneer project

» It was initiated by the U.S. National Security Agency (NSA)
(2003)

» The main idea: as a demonstrator of highly secure, low
defect, high-assurance software system.

» The NSA commissioned Praxis to re-develop the software for
the Tokeneer ID Station (TIS)

The Tokeneer project

» The specification and implementation were completed in 2003
and made publicly available by the NSA and Praxis in October
2008.

» Forming an ideal base for further research in program
verification at both industrial and academic communities.

Tokeneer specification /implementation

Praxis specified TIS in Z and implemented and tested it in Ada,
following the System Requirement Specification (SRS) and System
Test Specification (STS) documents (documents also publicly
available).

Tokeneer Challenges

Tokeneer Challenges

Challenge 1: Re-implement Tokeneer

To use different specification languages, programming languages,
verification tools to re-implement Tokeneer.

Tokeneer Challenges

Challenge 1: Re-implement Tokeneer

To use different specification languages, programming languages,
verification tools to re-implement Tokeneer.

Challenge 2: Proof of Security Properties

The Tokeneer specification contains 3 security properties. Praxis
presented a full demonstration of one of them and a partial
demonstration to another one: to fully proof all security properties.

Challenge 1

Challenge 1:
An approach for software development

Steps

Steps

1. To model TIS in Event-B (a formal methods based on
Step-wise Refinement) based on the existing Z specifications
of Tokeneer. This allows the TIS to be described in different
levels of abstraction.

Steps

1. To model TIS in Event-B (a formal methods based on
Step-wise Refinement) based on the existing Z specifications
of Tokeneer. This allows the TIS to be described in different
levels of abstraction.

2. To use Rodin (an IDE for Event-B) to verify the Event-B
model of TIS.

Steps

. To model TIS in Event-B (a formal methods based on

Step-wise Refinement) based on the existing Z specifications
of Tokeneer. This allows the TIS to be described in different
levels of abstraction.

To use Rodin (an IDE for Event-B) to verify the Event-B
model of TIS.

To use EventB2Java (a tool of Event-B) to generate Java
code for the Event-B model of the TIS.

Steps

. To model TIS in Event-B (a formal methods based on

Step-wise Refinement) based on the existing Z specifications
of Tokeneer. This allows the TIS to be described in different
levels of abstraction.

To use Rodin (an IDE for Event-B) to verify the Event-B
model of TIS.

To use EventB2Java (a tool of Event-B) to generate Java
code for the Event-B model of the TIS.

. To propagate the requirements in the STS document all the

way down to the JUnit test cases drawn from the generated
Java code, so that upon a test case failure, it is possible to
back-trace the failed requirements to the corresponding parts
in the model.

A brief description of Event-B

The Event-B method

Event-B models are complete developments of discrete transition
systems:

>

>

systems go through a series of stages, named refinements.

each refinement is a description of the system with a higher
level of detail.

each refinement is provably consistent with the previous one
(the proof obligations).

Event-B models are composed of contexts (static part) and
machines (dynamic part).

Event-B: Rodin

» Rodin platform is an open-source Eclipse IDE for the
development and verification of the Event-B models.

» Rodin automatically generates the set of proof obligations
(PO) necessary to prove consistency of machines.
» Rodin comes with a series of plug-ins that extend its
functionality. For instance:
> AtelierB provers to help users to automatically discharge proof
obligations.
» EventB2java generates Java implementations of Event-B
models.

Experimental results

Step 1: Event-B model of TIS

TIS Event-B model consists of an Abstract machine and 6

refinements:

Machine LOC
Abstract 43
certificate_L1 | 72
certificate_L2 | 125
entry_L1 219
entry_L2 264
enrol 213
admin 517
Total | 1453

We used the existing Z specification of TIS as a requirement

document.

Step 2: Event-B model of TIS — Verification

» Event-B is based on the idea of structuring a development
into many small steps to achieve a high degree of automation.

Machine LOC | #P0Os | Aut
Abstract 43 9 100
certificate_L1 | 72 36 88.9
certificate_L2 | 125 | 58 93.1
entry_L1 219 | 59 88.13
entry_L2 264 | 36 83.3
enrol 213 4 100
admin 517 132 90.9
Total 1453 [334 [901

Step 2: Findings

» Our initial Event-B model was inconsistent. We inspected the
model and found and corrected the inconsistencies.

» We were able to achieve a high degree of proof automation in
Rodin (90.1% were discharged automatically using Rodin’s
proof engines).

Step 2: Findings

» We gained confidence about our Event-B model: conditions
expressed in the SRS document were formally introduced as
invariants and events in Event-B.

» We were also able to encode and prove all three security
properties of TIS (Challenge 2).

» We were able to prove the soundness of the system w.r.t
those conditions by discharging all POs with Rodin.

Step 2: Findings

» However, there is no clear way to be sure that the formal
specifications in Event-B are sound w.r.t. the English
description of the requirements.

Step 3: Java implementation of TIS

» Once we finished to model the TIS in Event-B, we used
EventB2Java to generate a Java implementation of the
Event-B model.

Step 3: Findings

> EventB2Java automatically generated 2704 lines of Java code.

» The only difficulty we found with the translation is that
EventB2Java does not generate initial values for Event-B
constants in Java.

» Those values were manually set to adhere to axioms written in
Event-B.

» Nevertheless, these initial values are clearly described in the
STS document.

Step 4: JUnit testing of the implementation

» We manually wrote executable JUnit tests from the STS
document given by Praxis.

» The document also provides the needed input to the unit
under test and the generated JUnit tests evaluate its output
before assigning any verdict about its success or failure.

» We ran the set of tests against the code with a supplied input
data, then we compared the results obtained against the
expected results. Any mismatch in the result implies that the
model needs to be improved.

Step 4: Findings

» The initial Java implementation of the TIS did not pass all
the tests.

» We inspected our Event-B model, found errors, and generated
Java code again.

> We repeated this process until the generated Java code
successfully passed all the tests.

» We are confident about the behaviour of the implementation
since it meets the expectations defined in the STS document.

Tokeneer experiment

In applying this approach, users have the following advantages:
i finding inconsistencies in the Event-B model by

» discharging POs and
» performing tests in Java;

ii Event-B refinement chains tend to be short;
iii allows experts from different domains to work together;

iv once the model is correct and behaves correctly, it is ready to be
implemented. This approach ends with an initial Java program.

